Control of Liver Tissue Reconstitution in Mesenteric Leaves: The Effect of Preculture on Mouse Hepatic Progenitor Cells Prior to Transplantation

2013 ◽  
Vol 25 (4) ◽  
pp. 698-704 ◽  
Author(s):  
Nobuhiko Kojima ◽  
◽  
Yasuyuki Sakai

Our objective is to control the reconstitution of liverlike tissues at extrahepatic sites using hepatic progenitor cells (HPCs) andin vitropreculture prior to transplantation. We prepared cell-based hybrid grafts by culturing HPCs isolated from fetal E14.5 mouse livers on biodegradable, highly porous 3-dimensional poly-L-lactic acid (PLLA) scaffolds for 1 week in basal medium (the basal condition) or 10 mM nicotinamide (NA) and 1% dimethyl sulfoxide (DMSO) supplemented conditions (the ND-positive condition) prior to implantation. Sections of hybrid grafts cultured for 1 week showed that HPCs grew and spread on the surface of scaffolds under both basal and ND (+) conditions. Most of these cells were albumin (+) and CK18 (+). CK19 (+) cells were also present under the basal condition but not the ND (+) condition. Cultured hybrid grafts were implanted into the mesenteric leaves of mice and removed after 1 month. Transplanted tissues cultured under the basal condition consisted of albumin (+) hepatocyte-like and CK19 (+) biliary epithelial cell (BEC)-like cells organized in duct-like structures. In contrast, integrated tissues cultured under the ND (+) condition alone had differentiated albumin (+) hepatocyte-like cells and were relatively larger than those under the basal condition. Hepatocyte-like cells of transplanted hybrid grafts cultured under both conditions were periodic acid-Schiff (PAS) staining-positive and expressed transcription factors, hepatocyte nuclear factor (HNF) 4 and CCAAT/enhancer-binding protein (C/EBP) α. These findings suggest that combining progenitor cells andin vitropreculture may potentially regulate liverlike tissues at extrahepatic sites.

2007 ◽  
Vol 292 (2) ◽  
pp. G526-G534 ◽  
Author(s):  
Naoko Kamo ◽  
Kentaro Yasuchika ◽  
Hideaki Fujii ◽  
Toshitaka Hoppo ◽  
Takafumi Machimoto ◽  
...  

We previously reported that the in vitro maturation of CD49f+Thy1−CD45− (CD49f positive) fetal hepatic progenitor cells (HPCs) is supported by Thy1-positive mesenchymal cells derived from the fetal liver. These mesenchymal cell preparations contain two populations, one of a cuboidal shape and the other spindle shaped in morphology. In this study, we determined that the mucin-type transmembrane glycoprotein gp38 could distinguish cuboidal cells from spindle cells by immunocytochemistry. RT-PCR analysis revealed differences between isolated CD49f±Thy1+gp38+CD45− (gp38 positive) cells and CD49f±Thy1+gp38−CD45− (gp38 negative) cells, whereas both cells expressed mesenchymal cell markers. The coculture with gp38-positive cells promoted the maturation of CD49f-positive HPCs, which was estimated by positivity for periodic acid-Schiff (PAS) staining, whereas the coculture with gp38-negative cells maintained CD49f-positive HPCs negative for PAS staining. The expression of mature hepatocyte markers, such as tyrosine aminotransferase, tryptophan-2,3-dioxygenase, and glucose-6-phosphatase, were upregulated on HPCs by coculture with gp38-positive cells. Furthermore, transmission electron microscopy revealed the acquisition of mature hepatocyte features by HPCs cocultured with gp38-positive cells. This effect on maturation of HPCs was inhibited by the addition of conditioned medium derived from gp38-negative cells. By contrast, the upregulation of bromodeoxyuridine incorporation by HPCs demonstrated the proliferative effect of coculture with gp38-negative cells. In conclusion, these results suggest that in vitro maturation of HPCs promoted by gp38-positive cells may be opposed by an inhibitory effect of gp38-negative cells, which likely maintain the immature, proliferative state of HPCs.


Reproduction ◽  
2003 ◽  
pp. 855-863 ◽  
Author(s):  
A Albihn ◽  
RO Waelchli ◽  
J Samper ◽  
JG Oriol ◽  
BA Croy ◽  
...  

A novel xenogeneic transplantation approach was used to determine whether it is embryonic or maternal tissue that produces the material that gives rise to the mucin-like glycoprotein of the equine embryonic capsule. Endometrial biopsy samples and conceptuses from six mares at days 13-15 after ovulation were prepared as 1 mm(3) grafts of endometrium, trophoblast and capsule for transplantation, alone or in combination, into various sites in 88 immunodeficient (severe combined immunodeficient or RAG2/gamma(c) double mutant) mice. The overall recovery rate of grafts was over 50%, reaching 100% with experience and use of the renal subcapsular space exclusively. Periodic acid-Schiff (PAS) staining demonstrated capsule-like extracellular glycoprotein secretions at the graft site in 11 of 22 sites examined. Strong PAS-positive reactions (5-7 microm thick) were found in four of six sites containing trophoblast alone, five of six endometrium plus trophoblast sites, and zero of eight grafts of endometrium alone. Two recovered grafts of capsule were also PAS-positive. The secreted glycoprotein was identified as equine embryonic capsule material by using a monoclonal antibody (mAb) specific to equine capsule (mAb OC-1) in two experiments. In the first, in cryosections, this antibody bound to 19 of 19 recovered trophoblast graft secretions (including those in 12 from mice that had not received endometrium at any site), ten of ten recovered endometrium plus trophoblast grafts, and zero of 12 recovered endometrial grafts from mice in which trophoblast had been grafted to the same site or another site in the same mouse. In the second experiment, in paraformaldehyde-fixed sections of grafts from 11 mice, specific staining, identical to that shown by grafted capsule, was obtained with grafts of trophoblast (both alone and in combination with endometrium) but not with grafts of endometrium. These results support the contention that trophoblast is the principal source of equine embryonic capsule. In addition, they demonstrate that xenogeneic grafting is a useful means of culturing endometrium and conceptus tissues outside the mare when in vitro techniques do not suffice.


Cartilage ◽  
2019 ◽  
pp. 194760351987086
Author(s):  
Natalia Viana Tamiasso ◽  
Carla Maria Osório Silva ◽  
Amanda Maria Sena Reis ◽  
Natália Melo Ocarino ◽  
Rogéria Serakides

Objective We sought to evaluate the effect of different concentrations of ethanol on phenotype and activity of articular chondrocyte synthesis of neonatal rats in 2-dimensional (2D) and 3-dimensional (3D) culture. Methods Chondrocytes were cultured in chondrogenic medium with different concentrations of ethanol: 0.0% v/v (control); 0.05% v/v (8.6 mM); 0.25% v/v (42.9 mM), and 0.5% v/v (85.7 mM). Chondrocytes under 2D culture were subjected to MTT assay, while chondrocytes under 3D culture were processed for paraffin inclusion and stained by periodic acid Schiff (PAS) to evaluate mean chondrocyte diameter and percentages of cells, nucleus, cytoplasm, well-differentiated matrix, and PAS+ areas. The expression of gene transcripts for aggrecan, Sox9, and type II collagen was evaluated by real-time quantitative polymerase chain reaction. Results There was no difference between groups by the MTT assay. PAS staining revealed that chondrocytes treated with 0.5% v/v ethanol had higher percentages of cytoplasm and nuclear areas, but with a reduction in PAS+ matrix area. The mean diameter of chondrocytes was similar between groups. The expression of aggrecan in the group treated with 0.5% v/v ethanol was lower in comparison to that in the control. In the groups treated with 0.25% v/v and 0.5% v/v ethanol, the percentage of differentiated cartilage was lower in comparison with that in the control. The group treated with 0.05% v/v ethanol was similar to the control in all parameters. Conclusions Ethanol acted directly on in vitro cultured articular chondrocytes of newborn rats, altering the chondrocyte phenotype and its synthesis activity, and these effects were dose dependent.


Zygote ◽  
2021 ◽  
pp. 1-8
Author(s):  
Mohammad Veisi ◽  
Kamran Mansouri ◽  
Vahideh Assadollahi ◽  
Cyrus Jalili ◽  
Afshin Pirnia ◽  
...  

Summary An in vitro spermatogonial stem cell (SSC) culture can serve as an effective technique to study spermatogenesis and treatment for male infertility. In this research, we compared the effect of a three-dimensional alginate hydrogel with Sertoli cells in a 3D culture and co-cultured Sertoli cells. After harvest of SSCs from neonatal mice testes, the SSCs were divided into two groups: SSCs on a 3D alginate hydrogel with Sertoli cells and a co-culture of SSCs with Sertoli cells for 1 month. The samples were evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays and bromodeoxyuridine (BrdU) tracing, haematoxylin and eosin (H&E) and periodic acid–Schiff (PAS) staining after transplantation into an azoospermic testis mouse. The 3D group showed rapid cell proliferation and numerous colonies compared with the co-culture group. Molecular assessment showed significantly increased integrin alpha-6, integrin beta-1, Nanog, Plzf, Thy-1, Oct4 and Bcl2 expression levels in the 3D group and decreased expression levels of P53, Fas, and Bax. BrdU tracing, and H&E and PAS staining results indicated that the hydrogel alginate improved spermatogenesis after transplantation in vivo. This finding suggested that cultivation of SSCs on alginate hydrogel with Sertoli cells in a 3D culture can lead to efficient proliferation and maintenance of SSC stemness and enhance the efficiency of SSC transplantation.


2018 ◽  
Vol 46 (3) ◽  
pp. 1263-1274 ◽  
Author(s):  
Fengxia Ding ◽  
Bo Liu ◽  
Wenjing Zou ◽  
Daiyin Tian ◽  
Qubei Li ◽  
...  

Background/Aims: Previous studies have shown that lipopolysaccharide (LPS) exposure may have a protective effect on asthma by reducing airway hyper-responsiveness, airway inflammation and serum IgE levels. However, there are few studies investigating the effect of LPS on mucous secretion in asthma. In this study, we evaluate the relationship between LPS pre-treatment in infant mice and airway mucus hypersecretion in an OVA (ovalbumin)-induced asthma model, and further explore the mechanisms behind this effect. Methods: Mice were pre-treated with LPS by intranasal instillation (i.n.) from the 3rd day of life for 10 consecutive days before the OVA-induced asthma model was established. In order to detect mucus secretion, periodic acid-Schiff (PAS) staining was carried out, and the expression of Muc5ac was detected. The IL-13 levels in Bronchoalveolar lavage fluid (BALF) and lung tissue were also detected. In vitro, the expression of Muc5ac mRNA and protein was quantified in IL-13-stimulated 16HBE cells with or without LPS pre-treatment. In addition, proteins in the JAK2/STAT6 pathway, transcription factors (forkhead box transcription factor A2 (FOXA2), activation protein-1(AP-1), NF-κB), and the levels of reactive oxygen species (ROS) were also measured in vivo and in vitro. Results: LPS pre-treatment reduced mucus secretion, as demonstrated by decreased PAS staining and muc5ac expression. Further exploration of the underlying mechanisms of this phenomenon revealed that LPS pre-treatment decreased the production of IL-13, IL-13 induced ROS synthesis was reduced, and the JAK2/STAT6 pathway was inhibited. Decreased stat6 increased transcription factor FOXA2, and the relatively increased FOXA2 further decreased the level of Muc5ac and mucous hypersecretion in OVA-induced asthma. Conclusions: LPS pre-treatment ameliorated mucus hypersecretion in an OVA-induced asthma model by inhibition of IL-13 production and by further inhibiting the JAK2/STAT6 pathway and ROS activity, and up-regulating expression of FOXA2.


2019 ◽  
Vol 20 (20) ◽  
pp. 5078 ◽  
Author(s):  
Hiroyuki Yazu ◽  
Naoyuki Kozuki ◽  
Murat Dogru ◽  
Ayako Shibasaki ◽  
Hiroshi Fujishima

The use of eyewash solutions in Japan, especially in patients with allergic conjunctivitis and contact lens wearers, has been increasing. Our aim was to investigate how the use of preservative-free eyewash solution in healthy eyes for one month affects corneal safety and ocular surface mucin. We analyzed 42 eyes of 21 individuals (17 males, four females; mean age: 36.1 ± 7.4 years) without ocular allergies, dry eyes, or other ocular diseases through a prospective study. Eyes were randomized to a wash group (group one) and a nonwash follow up group (group two). We evaluated the dry eye-related quality-of-life score (DEQS), tear film breakup time (TBUT), fluorescein staining score, mRNA expression of MUC5AC and MUC16, MUC16 immunohistochemistry, and MUC5AC periodic acid Schiff (PAS) staining. There was a significant decrease in DEQS scores after one month of eyewash use (p < 0.05). There were no significant differences in other evaluation items that were analyzed (all p > 0.05). Furthermore, no significant differences were observed between group one and group two in all endpoints (all p > 0.05). The results suggest that one month use of a nonpreserved eyewash solution has no detrimental effects on the tear film and the ocular surface mucins.


1991 ◽  
Vol 261 (1) ◽  
pp. G92-G103
Author(s):  
M. J. Rutten ◽  
C. D. Moore

The effects of low doses of luminal ethanol on the amiloride-sensitive apical membrane potential of Necturus antral mucosa were studied using conventional microelectrode techniques. Luminal ethanol (0.250-4.0% vol/vol) caused a dose-dependent hyperpolarization of the apical membrane potential (Vmc), an increase in transepithelial resistance (Rt) and resistance ratio (Ra/Rb), and a decrease in transepithelial potential (Vms). Luminal amiloride (100 microM) to 4% ethanol-treated antra did not cause any additional hyperpolarization of Vmc. Compared with luminal 2% ethanol-Ringer, an equivalent osmotic mannitol solution depolarized Vmc and basolateral potential (Vcs), decreased Rt and Ra/Rb, and increased Vms. A single dose of 0.50% ethanol attenuated the effects of a second 2% ethanol exposure on Vmc. No change in periodic acid-Schiff (PAS)-positive mucous granule content could be found between control and 2% ethanol-treated antra. The Ca2+ ionophores A23187 or ionomycin (0.25-5.0 microM) dose dependently hyperpolarized the Vmc and Vcs, increased Rt and Ra/Rb, and decreased Vms. Luminal Ca(2+)-free Ringer had no effect on luminal 2.00% ethanol-induced changes in membrane potentials or resistances. Pretreatment with BAPTA blocked by approximately 70 and 55% the Vmc hyperpolarization of 2 and 4% ethanol, respectively. Pretreatment with ruthenium red (10-50 microM) also dose dependently reduced the 2% ethanol-induced changes in Vmc. The data indicate that 1) low doses of luminal ethanol and Ca2+ ionophores have similar effects on Necturus gastric antral membrane potentials and resistances, 2) ethanol-induced hyperpolarizations of the Vmc are partially mediated through an alteration in intracellular Ca2+, and 3) low doses of luminal ethanol do not cause the release of antral epithelial mucous granules at the time when significant changes are occurring in the Vmc.


2018 ◽  
Vol 46 (2) ◽  
pp. 699-712 ◽  
Author(s):  
Feng Xu ◽  
Man Luo ◽  
Lulu He ◽  
Yuan Cao ◽  
Wen Li ◽  
...  

Background/Aims: Necroptosis, a form of programmed necrosis, is involved in the pathologic process of several kinds of pulmonary diseases. However, the role of necroptosis in particulate matter (PM)–induced pulmonary injury remains unclear. The objective of this study is to investigate the involvement of necroptosis in the pathogenesis of PM-induced toxic effects in pulmonary inflammation and mucus hyperproduction, both in vitro and in vivo. Methods: PM was administered into human bronchial epithelial (HBE) cells or mouse airways, and the inflammatory response and mucus production were assessed. The mRNA expressions of IL6, IL8 and MUC5AC in HBE cells and Cxcl1, Cxcl2, and Gm-csf in the lung tissues were detected by quantitative real-time RT-PCR. The secreted protein levels of IL6 and IL8 in culture supernatants and Cxcl1, Cxcl2, and Gm-csf in bronchoalveolar lavage fluid (BALF) were detected by enzyme-linked immunosorbent assay (ELISA). We used Western blot to measure the protein expressions of necroptosis-related proteins (RIPK1, RIPK3, and Phospho-MLKL), NF-κB (P65 and PP65), AP-1 (P-c-Jun and P-c-Fos) and MUC5AC. Cell necrosis and mitochondrial ROS were detected using flow cytometry. In addition, pathological changes and scoring of lung tissue samples were monitored using hemoxylin and eosin (H&E), periodic acid-schiff (PAS) and immunohistochemistry staining. Results: Our study showed that PM exposure induced RIP and MLKL-dependent necroptosis in HBE cells and in mouse lungs. Managing the necroptosis inhibitor Necrostatin-1 (Nec-1) and GSK’872, specific molecule inhibitors of necroptosis, markedly reduced PM-induced inflammatory cytokines, e.g., IL6 and IL8, and MUC5AC in HBE cells. Similarly, administering Nec-1 significantly reduced airway inflammation and mucus hyperproduction in PM-exposed mice. Mechanistically, we found PM–induced necroptosis was mediated by mitochondrial reactive oxygen species-dependent early growth response gene 1, which ultimately promoted inflammation and mucin expression through nuclear factor κB and activator protein-1 pathways, respectively. Conclusions: Our results demonstrate that necroptosis is involved in the pathogenesis of PM–induced pulmonary inflammation and mucus hyperproduction, and suggests that it may be a novel target for treatment of airway disorders or disease exacerbations with airborne particulate pollution.


Sign in / Sign up

Export Citation Format

Share Document