mucus secretion
Recently Published Documents


TOTAL DOCUMENTS

402
(FIVE YEARS 52)

H-INDEX

39
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Wenjing Zou ◽  
maozhu xu ◽  
Jie Hu ◽  
Lili Yang ◽  
Gang Gen ◽  
...  

Abstract Backgroud: The chromatin remodeling factor Brg1 (Brahma-related gene 1) is an important nuclear protein that promotes the transcriptional activation or inhibition of target genes by regulating ATP hydrolysis to generate energy which rearranges the position of nucleosomes and the interaction of histone DNA. In this study, we explored the effect of Brg1 on airway mucus hypersecretion in asthma.Methods: Six-to-eight-week-old female wild-type C57BL/6 mice (wild-type, WT) and type II alveolar epithelial cells (AECIIs) specifically knockout Brg1 mice (Brg1fl/fl) were selected as the experimental subjects. The asthma group was established with house dust mite (HDM), and the control group was treated with normal saline (n=10). Wright's staining was used to detect inflammatory cells in bronchoalveolar lavage fluid (BALF). Invasive lung function was used to assess the airway compliance. Hematoxylin and eosin and periodic acid-schiff staining were used to detect mucus secretion. The virus was used to knock down the Brg1 gene in the bronchial epithelial cell line (16HBE) and stimulated with HDM. Immunohistochemistry was used to measure mucin glycoprotein 5AC (MUC5AC) protein expression in the airway epithelium and 16HBE cells. Western blotting was used to detect the expression of the MUC5AC and JAK1/2-STAT6 signaling pathways in mouse lung tissue and 16HBE. Co-immunoprecipitation (Co-IP) and Chromatin Immunoprecipitation (CHIP) were used to detect whether Brg1 could regulate the JAK1/2-STAT6 signaling pathway.Results: Specifically, knocking out the Brg1 gene in AECIIs can reduce airway inflammation, airway compliance, and mucus hypersecretion in asthma. Knockdown of the Brg1 gene can simultaneously reduce Interleukin-13 (IL-13) and the expression of MUC5AC protein in airway epithelial cells and the activation of the JAK1/2-STAT6 signaling pathway. The results of Co-IP and CHIP showed that Brg1 could bind to the JAK1/2 promoter region, regulating the activity of the JAK1/2-STAT6 pathway affects airway mucus secretion in asthma.Conclusion: Brg1 gene knockout in airway epithelial cells can reduce asthmatic airway mucus hypersecretion and the expression of MUC5AC protein in airway epithelial cells partly by inhibiting the activation of the JAK1/2-STAT6 signaling pathway.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Nurul ’Ain Abu Bakar ◽  
Muhammad Nazrul Hakim Abdullah ◽  
Vuanghao Lim ◽  
Yoke Keong Yong

Peptic ulcer disease is a multifactorial disorder and is the most significant public health concern nowadays. Previous study showed that essential oil extracted from Momordica charantia’s seed exhibited gastroprotective effect. However, the evidence for the gastroprotective effect of its active compound, polypeptide K (PPK), remains unclear. This study aimed to examine the preventive effect of PPK against different experimental gastric lesions models in rats. The possible gastroprotective effect of PPK was assessed in hydrochloride ethanol- and indomethacin-induced gastric ulcer models in Sprague Dawley rats and was further evaluated macroscopically and microscopically. Pyloric ligation experiments were used to investigate gastric secretion. Oral administration of PPK at all concentrations (10, 25, and 50 mg/kg) showed significant p < 0.05 reduction in total area of lesion in both hydrochloride ethanol- and indomethacin-induced gastric ulcer models. The highest inhibition rate was seen in PPK dose of 50 mg/kg with 64.9% and 72.2% on hydrochloride ethanol and indomethacin models, respectively. Microscopically, PPK preserved the normal architectures of the gastric tissues from being damaged by hydrochloride ethanol and indomethacin. Further, in the pyloric ligation studies, PPK significantly p < 0.05 decreased the ulcer area where the highest protection was exhibited by 50 mg/kg with 70% inhibition rate. Moreover, all concentrations of PPK also significantly p < 0.05 enhanced the gastric wall mucus secretion. Collectively, this study demonstrated the gastroprotective effect of PPK on hydrochloride ethanol- and indomethacin-induced gastric ulcer models. The possible mechanism might be associated with enhanced mucus secretion and thus lowering the total acidity.


2022 ◽  
Vol 14 (627) ◽  
Author(s):  
Sarah E. Headland ◽  
Hart S. Dengler ◽  
Daqi Xu ◽  
Grace Teng ◽  
Christine Everett ◽  
...  

Bacterial-associated LPS drives oncostatin M–dependent airway inflammation and mucus hypersecretion in severe asthma.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1548
Author(s):  
Libardo Suárez ◽  
Andrés Pereira ◽  
William Hidalgo ◽  
Nelson Uribe

Staphylococcus aureus is an important etiological agent that causes skin infections, and has the propensity to form biofilms, leading to significant mortality and morbidity in patients with wounds. Mucus secretion from the Giant African snail Achatina fulica is a potential source of biologically active substances that might be an important source for new drugs to treat resistant and biofilm-forming bacteria such as S. aureus. This study evaluated the effect of semi-purified fractions from the mucus secretion of A. fulica on the growth, biofilm formation and virulence factors of S. aureus. Two fractions: FMA30 (Mw >30 kDa) and FME30 (Mw 30−10 kDa) exhibited antimicrobial activity against S. aureus with a MIC50 of 25 and 125 µg/mL, respectively. An inhibition of biofilm formation higher than 80% was observed at 9 µg/mL with FMA30 and 120 µg/mL with FME30. Furthermore, inhibition of hemolytic and protease activity was determined using a concentration of MIC20, and FME30 showed a strong inhibitory effect in the formation of clots. We report for the first time the effect of semi-purified fractions of mucus secretion of A. fulica on biofilm formation and activity of virulence factors such as α-hemolysin, coagulase and proteases produced by S. aureus strains.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ting-Ting Yen ◽  
Rong-San Jiang ◽  
Ching-Yun Chang ◽  
Chih-Ying Wu ◽  
Kai-Li Liang

AbstractAllergic rhinitis (AR) and chronic rhinosinusitis (CRS) share some similar pathological mechanisms. In current study, we intend to investigate the impact of AR on CRS. In addition, we explored the efficacy of erythromycin (EM) treatment on CRS mice with or without AR (CRSwoAR, CRSwAR). Study subjects were divided into control, CRSwoAR, and CRSwAR groups. Experimental mice were divided similarly into control, CRSwoAR, and CRSwAR groups. In addition, CRS mice were treated with EM at 0.75, 7.5, or 75 mg/kg or with dexamethasone (Dex) at 1 mg/kg. In our results, allergy exacerbates inflammation that was evident in nasal histology and cytokine expression both in patients and in mice with CRS. Dex 1 mg/kg, EM 7.5 or 75 mg/kg treatments significantly inhibited serum IgE and IgG2a in CRS mice. EM-treated CRS mice had significantly elevated IL-10 levels and had a reversal of Th-1/Th-2 cytokine expression in nasal-associated lymphoid tissue. MUC5AC expressions were significantly reduced in the 7.5 or 75 mg/kg EM-treated mice compared with untreated mice. EM showed inhibitions on immunoglobulin production and mucus secretion stronger than Dex. We concluded that comorbid AR enhanced inflammation of CRS. EM and Dex treatments showed similar anti-inflammatory effects on CRS but through partly different mechanisms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tao Zheng ◽  
Zhuo Song ◽  
Jun Qiang ◽  
Yifan Tao ◽  
Haojun Zhu ◽  
...  

The transport of live fish is a necessary step for commercial production. The skin of teleost fish is the first non-specific immune barrier against exogenous stimuli, and it plays an important protective role under transport stress. Thus, the aim of this study was to explore the skin responses to transport stress in hybrid yellow catfish (Tachysurus fulvidraco♀ × Pseudobagrus vachellii♂) through transcriptome and biochemical analyses. Water samples were collected during a simulated transport treatment. Biochemical indexes and/or gene expression in blood, skin, and mucus in fish in control groups and transport-stress groups (0 h, 2 h, 4 h, 8 h, 16 h) were assayed. The levels of total ammonia–nitrogen and nitrite–nitrogen in the water increased with increasing transport time. Comparison of skin transcriptomes between the control group and the group subjected to 16 h of transport revealed 1547 differentially expressed genes (868 up-regulated and 679 down-regulated). The results of the transcriptome analysis were validated by analyses of the expression levels of selected genes by qRT-PCR. The results indicated that the toll-like receptors and nod-like receptors signaling pathways mediate the skin’s immune response to transport stress: tlr9, mfn2, and ikbke were significantly up-regulated and nfkbia and map3k7cl were significantly down-regulated under transport stress. With increasing transport time, lysozyme activity and the immunoglobulin M content in skin mucus first increased and then decreased. The number of mucous cells peaked at 8 h of transport stress, and then decreased. The mucus cells changed from types II and IV to types I, II, III, and IV. The amounts of red and white blood cells and the levels of hemoglobin and hematocrit first increased and then decreased during 16 h of transport stress. Together, the results showed that the skin responds to transport stress by activating the immune signaling pathway and regulating mucus secretion. These findings have important biological significance for selecting strains that tolerate transport, as well as economic significance for optimizing the transport conditions for scaleless fish.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yao Li ◽  
Xiao Xiao Tang

The airway mucus barrier is a primary defensive layer at the airway surface. Mucins are the major structural components of airway mucus that protect the respiratory tract. Respiratory viruses invade human airways and often induce abnormal mucin overproduction and airway mucus secretion, leading to airway obstruction and disease. The mechanism underlying the virus-induced abnormal airway mucus secretion has not been fully studied so far. Understanding the mechanisms by which viruses induce airway mucus hypersecretion may open new avenues to treatment. In this article, we elaborate the clinical and experimental evidence that respiratory viruses cause abnormal airway mucus secretion, review the underlying mechanisms, and also discuss the current research advance as well as potential strategies to treat the abnormal airway mucus secretion caused by SARS-CoV-2.


2021 ◽  
Author(s):  
Takafumi Kato ◽  
Giorgia Radicioni ◽  
Micah J Papanikolas ◽  
Georgi V Stoychev ◽  
Matthew R Markovetz ◽  
...  

Cystic fibrosis (CF) is characterized by abnormal transepithelial ion transport. However, a description of CF lung disease pathophysiology unifying superficial epithelial and submucosal gland (SMG) dysfunctions has remained elusive. We hypothesized that biophysical abnormalities associated with CF mucus hyperconcentration provide a unifying mechanism. Studies of the anion secretion-inhibited pig airway CF model revealed elevated SMG mucus concentrations, osmotic pressures, and SMG mucus accumulation. Human airway studies revealed hyperconcentrated CF SMG mucus with raised osmotic pressures and cohesive forces predicted to limit SMG mucus secretion/release. Utilizing proline-rich protein 4 (PRR4) as a biomarker of SMG secretion, proteomics analyses of CF sputum revealed markedly lower PRR4 levels compared to healthy and bronchiectasis controls, consistent with a failure of CF SMGs to secrete mucus onto airway surfaces. Raised mucus osmotic/cohesive forces, reflecting mucus hyperconcentration, provide a unifying mechanism that describes disease-initiating mucus accumulation on airway surfaces and within SMGs of the CF lung.


Sign in / Sign up

Export Citation Format

Share Document