Design Method for Improvement of Transient-State Intersample Output of Multirate Systems Including Integrators

2016 ◽  
Vol 28 (5) ◽  
pp. 702-706 ◽  
Author(s):  
Tomonori Kamiya ◽  
◽  
Takao Sato ◽  
Nozomu Araki ◽  
Yasuo Konishi

[abstFig src='/00280005/12.jpg' width='300' text='Comparison of output responses' ] This paper discusses a design method for a multirate system including integrators, where the update interval of the control input is shorter than the sampling interval of the plant output. In such a multirate control system, intersample output might oscillate between sampled outputs in the steady state even if the sampled output converges to the reference input. This is because the control input can be updated between the sampled outputs. In a conventional method, a predesigned control law is extended such that the steady-state ripples are eliminated independent of a discrete-time response. However, the conventional method is invalid when integrators are included in a controlled plant. In this study, a difference operation in discrete time is used to address this issue. Moreover, the transient-state intersample response is improved independent of a pre-designed discrete-time response.

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Li Li ◽  
Fucheng Liao

A preview controller design method for discrete-time systems based on LMI is proposed. First, we use the difference between a system state and its steady-state value, instead of the usual difference between system states, to transform the tracking problem into a regulator problem. Then, based on the Lyapunov stability theory and linear matrix inequality (LMI) approach, the preview controller ensuring asymptotic stability of the closed-loop system for the derived augmented error system is found. And an extended functional observer is designed in this paper which can achieve disturbance attenuation in the estimation process; as a result, the state of the system can be reconstructed rapidly and accurately. The controller gain matrix is obtained by solving an LMI problem. By incorporating the controller obtained into the original system, we obtain the preview controller of the system under consideration. To make sure that the output tracks the reference signal without steady-state error, an integrator is introduced. The numerical simulation example also illustrates the effectiveness of the results in the paper.


10.26524/cm78 ◽  
2020 ◽  
Vol 4 (2) ◽  
Author(s):  
Syed Tahir Hussainy ◽  
Lokesh D

This work analysis some discrete-time queueing mechanisms with infinitely many servers.By using a shot noise process, general results on the system size in discrete-time are given both in transient state and in steady state. For this we use the classical differentiation formula of F´a di Bruno. First two moments of the system size and distribution of the busy period of the system are also computed.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1299
Author(s):  
Shengli Lv

This paper analyzed the multi-machine repairable system with one unreliable server and one repairman. The machines may break at any time. One server oversees servicing the machine breakdown. The server may fail at any time with different failure rates in idle time and busy time. One repairman is responsible for repairing the server failure; the repair rate is variable to adapt to whether the machines are all functioning normally or not. All the time distributions are exponential. Using the quasi-birth-death(QBD) process theory, the steady-state availability of the machines, the steady-state availability of the server, and other steady-state indices of the system are given. The transient-state indices of the system, including the reliability of the machines and the reliability of the server, are obtained by solving the transient-state probabilistic differential equations. The Laplace–Stieltjes transform method is used to ascertain the mean time to the first breakdown of the system and the mean time to the first failure of the server. The case analysis and numerical illustration are presented to visualize the effects of the system parameters on various performance indices.


Sign in / Sign up

Export Citation Format

Share Document