scholarly journals Aerial Manipulator Control Method Based on Generalized Jacobian

2021 ◽  
Vol 33 (2) ◽  
pp. 231-241
Author(s):  
Takahiro Ikeda ◽  
Kenichi Ohara ◽  
Akihiko Ichikawa ◽  
Satoshi Ashizawa ◽  
Takeo Oomichi ◽  
...  

This paper describes a control method for an aerial manipulator on an unmanned aerial vehicle (UAV) by using a generalized Jacobian (GJ). Our task is to realize visual check of bridge inspection by employing a UAV with a multi-degree-of-freedom (DoF) manipulator on its top. The manipulator is controlled by using the GJ. Subsequently, by comparing the aerial manipulator control with a conventional Jacobian experimentally, we discovered that the accuracy of the control improved by applying the GJ. The manipulator has three DoFs in the X-Z plane of the UAV coordinate system. The experiment shows that the manipulator controlled with the GJ can compensate for the pose error of the body by 54.5% and 47.7% in the X- and Z-axes, respectively.

2019 ◽  
Vol 36 (7) ◽  
pp. 1212-1221
Author(s):  
Takahiro Ikeda ◽  
Satoshi Minamiyama ◽  
Shogo Yasui ◽  
Kenichi Ohara ◽  
Akihiko Ichikawa ◽  
...  

2021 ◽  
Vol 24 (4) ◽  
pp. 200-216
Author(s):  
V. V. Nguyen ◽  
E. E. Usina

Purpose or research. Improving guidance accuracy of robotic capture mounted on an unmanned aerial vehicle and the stability of combined aerial manipulation system is the main objective of this study. In order to achieve this goal, a particular task of developing a manipulator control system that considers joint working space of manipulator and unmanned aerial vehicle has been solved. Methods. Kinematic model of a manipulator with three degrees of freedom is proposed in this work. This is a part of air manipulation system of quadrotor. Rotary movement of two successive links is performed by means of hinge joint. Direct and inverse kinematic tasks were solved for this manipulator. Equations for dynamic model were also obtained. Dynamic response of each link is sufficient for quick stabilization of the system with little re-adjustment. Self-tuning fuzzy proportional-integral-differentiating (PID) regulator was developed based on these data to control the manipulator. Control system for each manipulator link consists of a PID regulator and a fuzzy PID output using Mamdani method. Results. Simulation of developed manipulator control system was carried out in the absence of disturbances. The proposed control system satisfies specified requirements and ensures continuous and smooth movement of manipulator links in calculated trajectory. Conclusion. The developed three-link manipulator motion control method provides a horizontal mass center shift not more than 1.25 mm, which is an acceptable result for rapid stabilization of unmanned aerial manipulator and further practical experiments.


10.29007/zw9k ◽  
2020 ◽  
Author(s):  
Kazuhide Nakata ◽  
Kazuki Umemoto ◽  
Kenji Kaneko ◽  
Ryusuke Fujisawa

This study addresses the development of a robot for inspection of old bridges. By suspending the robot with a wire and controlling the wire length, the movement of the robot is realized. The robot mounts a high-definition camera and aims to detect cracks on the concrete surface of the bridge using this camera. An inspection method using an unmanned aerial vehicle (UAV) has been proposed. Compared to the method using an unmanned aerial vehicle, the wire suspended robot system has the advantage of insensitivity to wind and ability to carry heavy equipments, this makes it possible to install a high-definition camera and a cleaning function to find cracks that are difficult to detect due to dirt.


2019 ◽  
Vol 38 (4) ◽  
pp. 403-421 ◽  
Author(s):  
Burak Yüksel ◽  
Cristian Secchi ◽  
Heinrich H. Bülthoff ◽  
Antonio Franchi

This paper proposes the use of a novel control method based on interconnection and damping assignment–passivity-based control (IDA-PBC) in order to address the aerial physical interaction (APhI) problem for a quadrotor unmanned aerial vehicle (UAV). The apparent physical properties of the quadrotor are reshaped in order to achieve better APhI performances, while ensuring the stability of the interaction through passivity preservation. The robustness of the IDA-PBC method with respect to sensor noise is also analyzed. The direct measurement of the external wrench, needed to implement the control method, is compared with the use of a nonlinear Lyapunov-based wrench observer and advantages/disadvantages of both methods are discussed. The validity and practicability of the proposed APhI method is evaluated through experiments, where for the first time in the literature, a lightweight all-in-one low-cost force/torque (F/T) sensor is used onboard of a quadrotor. Two main scenarios are shown: a quadrotor responding to external disturbances while hovering (physical human–quadrotor interaction), and the same quadrotor sliding with a rigid tool along an uneven ceiling surface (inspection/painting-like task).


2017 ◽  
Vol 67 (3) ◽  
pp. 245 ◽  
Author(s):  
Sudhir Nadda ◽  
A. Swarup

The model of a quadrotor unmanned aerial vehicle (UAV) is nonlinear and dynamically unstable. A flight controller design is proposed on the basis of Lyapunov stability theory which guarantees that all the states remain and reach on the sliding surfaces. The control strategy uses sliding mode with a backstepping control to perform the position and attitude tracking control. This proposed controller is simple and effectively enhance the performance of quadrotor UAV. In order to demonstrate the robustness of the proposed control method, White Gaussian Noise and aerodynamic moment disturbances are taken into account. The performance of the nonlinear control method is evaluated by comparing the performance with developed linear quadratic regulator and existing backstepping control technique and proportional-integral-derivative from the literature. The comparative performance results demonstrate the superiority and effectiveness of the proposed control strategy for the quadrotor UAV.


2017 ◽  
Vol 89 (2) ◽  
pp. 193-202 ◽  
Author(s):  
Halit Firat Erdogan ◽  
Ayhan Kural ◽  
Can Ozsoy

Purpose The purpose of this paper is to design a controller for the unmanned aerial vehicle (UAV). Design/methodology/approach In this study, the constrained multivariable multiple-input and multiple-output (MIMO) model predictive controller (MPC) has been designed to control all outputs by manipulating inputs. The aim of the autopilot of UAV is to keep the UAV around trim condition and to track airspeed commands. Findings The purpose of using this control method is to decrease the control effort under the certain constraints and deal with interactions between each output and input while tracking airspeed commands. Originality/value By using constraint, multivariable (four inputs and seven outputs) MPC unlike the relevant literature in this field, the UAV tracked airspeed commands with minimum control effort dealing with interactions between each input and output under disturbances such as wind.


2021 ◽  
Vol 2 (2) ◽  
pp. 121-131
Author(s):  
Jennifer S. Raj

In this research work and unmanned aerial vehicle (UAV) that uses blockchain methodology to collect health data from the users and saves it on a server nearby is introduced. In this paper the UAV communicates with the body sensor hives (BSH) through a low-power secure manner. This process is established using a token with which the UAV establishes relationship with the BSH. The UAV decrypts the retrieved HD with the help of of the shared key, creating a two-phase authentication mechanism. When verified, the HT is transmitted to a server nearby in a safe manner using blockchain. The proposed healthcare methodology is analysed to determine its feasibility. Simulation and implementation is executed and a performance of the work is observed. Analysis indicates that the proposed work provides good assistance in a secure environment.


Sign in / Sign up

Export Citation Format

Share Document