Model predictive control of an unmanned aerial vehicle

2017 ◽  
Vol 89 (2) ◽  
pp. 193-202 ◽  
Author(s):  
Halit Firat Erdogan ◽  
Ayhan Kural ◽  
Can Ozsoy

Purpose The purpose of this paper is to design a controller for the unmanned aerial vehicle (UAV). Design/methodology/approach In this study, the constrained multivariable multiple-input and multiple-output (MIMO) model predictive controller (MPC) has been designed to control all outputs by manipulating inputs. The aim of the autopilot of UAV is to keep the UAV around trim condition and to track airspeed commands. Findings The purpose of using this control method is to decrease the control effort under the certain constraints and deal with interactions between each output and input while tracking airspeed commands. Originality/value By using constraint, multivariable (four inputs and seven outputs) MPC unlike the relevant literature in this field, the UAV tracked airspeed commands with minimum control effort dealing with interactions between each input and output under disturbances such as wind.

2019 ◽  
Vol 42 (5) ◽  
pp. 951-964 ◽  
Author(s):  
Boyang Zhang ◽  
Xiuxia Sun ◽  
Shuguang Liu ◽  
Xiongfeng Deng

This paper studies the disturbance observer-based model predictive control approach to deal with the unmanned aerial vehicle formation flight with unknown disturbances. The distributed control problem for a class of multiple unmanned aerial vehicle systems with reference trajectory tracking and disturbance rejection is formulated. Firstly, a local distributed controller is designed by using the model predictive control method to achieve stable tracking, where the local optimization problem is solved by an adaptive differential evolution algorithm. Then, a feedforward compensation controller is introduced by using a disturbance observer to estimate and compensate disturbances, and improve the ability of anti-interference. Besides, the stability of the proposed composite controller is analyzed as well. Finally, the simulation examples are provided to illustrate the validity of proposed control structure.


2017 ◽  
Vol 89 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Celâl Ada ◽  
Ayhan Kural

Purpose The purpose of this paper is to present the autopilot design for the missile under various disturbances. Design/methodology/approach In this study, model predictive control (MPC) method has been used for autopilot design for each axis. The aim of autopilot is that to keep the roll angle value around the zero degree and to track pitch/yaw acceleration commands. This three-axes control methodology also takes into consideration the interaction between pitch, yaw and roll motions. Findings The purpose of using MPC method for three-axes of the autopilot is to decrease the control effort and to make the close-loop system insensitive against modeling uncertainties and stochastic effects. Originality/value This study shows that the missile is able to reach to the desired target with good robustness, low control effort and little miss-distance under disturbances such as aerodynamic uncertainties, thrust misalignment and gust affect by using this alternative control method.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anjan Chamuah ◽  
Rajbeer Singh

Purpose The purpose of the paper is to describe the evolving regulatory structures of the civilian unmanned aerial vehicle (UAV) in India and Japan, not yet fully developed to regulate the deployment of the UAV. India and Japan are at the forefront to overhaul the respective regulatory framework to address issues of accountability, responsibility and risks associated with the deployment of UAV technologies. Design/methodology/approach In-depth interviews are conducted both in Japan and India to gather primary data based on the snowball sampling method. The paper addresses questions such as what is the current scenario of civilian UAV deployment in India and Japan. What are the regulation structures for Civil UAV deployment and operation and how they differ in India and Japan? What are the key regulatory challenges for Civil UAV deployment in India? How regulation structure enables or inhibits the users and operators of Civil UAVs in India? What are mutual learnings concerning UAV regulations? Findings Findings reveal that the Indian regulations address issues of responsibility by imparting values of privacy, safety, autonomy and security; Japanese regulation prefers values of trust, responsibility, safety and ownership with more freedom to experiment. Originality/value The study on civilian UAV regulatory framework is a new and innovative work embedded by the dimensions of responsibility and accountability from a responsible innovation perspective. The work is a new contribution to innovation literature looked at from regulatory structures. Field visits to both Japan and India enrich the study to a new elevation.


2019 ◽  
Vol 7 (3) ◽  
pp. 120-132
Author(s):  
Kashish Gupta ◽  
Bara Jamal Emran ◽  
Homayoun Najjaran

Purpose The purpose of this paper is to facilitate autonomous landing of a multi-rotor unmanned aerial vehicle (UAV) on a moving/tilting platform using a robust vision-based approach. Design/methodology/approach Autonomous landing of a multi-rotor UAV on a moving or tilting platform of unknown orientation in a GPS-denied and vision-compromised environment presents a challenge to common autopilot systems. The paper proposes a robust visual data processing system based on targets’ Oriented FAST and Rotated BRIEF features to estimate the UAV’s three-dimensional pose in real time. Findings The system is able to visually locate and identify the unique landing platform based on a cooperative marker with an error rate of 1° or less for all roll, pitch and yaw angles. Practical implications The proposed vision-based system aims at on-board use and increased reliability without a significant change to the computational load of the UAV. Originality/value The simplicity of the training procedure gives the process the flexibility needed to use a marker of any unknown/irregular shape or dimension. The process can be easily tweaked to respond to different cooperative markers. The on-board computationally inexpensive process can be added to off-the-shelf autopilots.


2018 ◽  
Vol 92 (3) ◽  
pp. 318-328
Author(s):  
Marcin Chodnicki ◽  
Katarzyna Bartnik ◽  
Miroslaw Nowakowski ◽  
Grzegorz Kowaleczko

Purpose The motivation to perform research on feedback control system for unmanned aerial vehicles, a fact that each quadrocopter is unstable. Design/methodology/approach For this reason, it is necessary to design a control system which is capable of making unmanned aerial vehicle vertical take-off and landing (UAV VTOL) stable and controllable. For this purpose, it was decided to use a feedback control system with cascaded PID controller. The main reason for using it was that PID controllers are simple to implement and do not use much hardware resources. Moreover, cascaded control systems allow to control object response using more parameters than in a standard PID control. STM32 microcontrollers were used to make a real control system. The rapid prototyping using Embedded Coder Toolbox, FreeRTOS and STM32 CubeMX was conducted to design the algorithm of the feedback control system with cascaded PID controller for unmanned aerial vehicle vertical take-off and landings (UAV VTOLs). Findings During research, an algorithm of UAV VTOL control using the feedback control system with cascaded PID controller was designed. Tests were performed for the designed algorithm in the model simulation in Matlab/Simulink and in the real conditions. Originality/value It has been proved that an additional control loop must have a full PID controller. Moreover, a new library is presented for STM32 microcontrollers made using the Embedded Coder Toolbox just for the research. This library enabled to use rapid prototyping while developing the control algorithms.


2019 ◽  
Vol 38 (4) ◽  
pp. 403-421 ◽  
Author(s):  
Burak Yüksel ◽  
Cristian Secchi ◽  
Heinrich H. Bülthoff ◽  
Antonio Franchi

This paper proposes the use of a novel control method based on interconnection and damping assignment–passivity-based control (IDA-PBC) in order to address the aerial physical interaction (APhI) problem for a quadrotor unmanned aerial vehicle (UAV). The apparent physical properties of the quadrotor are reshaped in order to achieve better APhI performances, while ensuring the stability of the interaction through passivity preservation. The robustness of the IDA-PBC method with respect to sensor noise is also analyzed. The direct measurement of the external wrench, needed to implement the control method, is compared with the use of a nonlinear Lyapunov-based wrench observer and advantages/disadvantages of both methods are discussed. The validity and practicability of the proposed APhI method is evaluated through experiments, where for the first time in the literature, a lightweight all-in-one low-cost force/torque (F/T) sensor is used onboard of a quadrotor. Two main scenarios are shown: a quadrotor responding to external disturbances while hovering (physical human–quadrotor interaction), and the same quadrotor sliding with a rigid tool along an uneven ceiling surface (inspection/painting-like task).


Sign in / Sign up

Export Citation Format

Share Document