Application of the exp(−ϕ(Ɛ))-Expansion Method for Exact Solutions of the Non-Homogeneous Radhadkrishnan-Kundu-Lakshmanan Equationdering Third-Party Endorsement

2021 ◽  
Vol 11 (2) ◽  
pp. 23-29
Author(s):  
Rawipa Yangchareonyuanyong ◽  
Sanoe Koonprasert ◽  
Sekson Sirisubtawee
2020 ◽  
Vol 11 (1) ◽  
pp. 93-100
Author(s):  
Vina Apriliani ◽  
Ikhsan Maulidi ◽  
Budi Azhari

One of the phenomenon in marine science that is often encountered is the phenomenon of water waves. Waves that occur below the surface of seawater are called internal waves. One of the mathematical models that can represent solitary internal waves is the modified Korteweg-de Vries (mKdV) equation. Many methods can be used to construct the solution of the mKdV wave equation, one of which is the extended F-expansion method. The purpose of this study is to determine the solution of the mKdV wave equation using the extended F-expansion method. The result of solving the mKdV wave equation is the exact solutions. The exact solutions of the mKdV wave equation are expressed in the Jacobi elliptic functions, trigonometric functions, and hyperbolic functions. From this research, it is expected to be able to add insight and knowledge about the implementation of the innovative methods for solving wave equations. 


Filomat ◽  
2018 ◽  
Vol 32 (9) ◽  
pp. 3347-3354 ◽  
Author(s):  
Nematollah Kadkhoda ◽  
Michal Feckan ◽  
Yasser Khalili

In the present article, a direct approach, namely exp(-?)-expansion method, is used for obtaining analytical solutions of the Pochhammer-Chree equations which have a many of models. These solutions are expressed in exponential functions expressed by hyperbolic, trigonometric and rational functions with some parameters. Recently, many methods were attempted to find exact solutions of nonlinear partial differential equations, but it seems that the exp(-?)-expansion method appears to be efficient for finding exact solutions of many nonlinear differential equations.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yongyi Gu ◽  
Fanning Meng

In this paper, we derive analytical solutions of the (2+1)-dimensional Kadomtsev-Petviashvili (KP) equation by two different systematic methods. Using the exp⁡(-ψ(z))-expansion method, exact solutions of the mentioned equation including hyperbolic, exponential, trigonometric, and rational function solutions have been obtained. Based on the work of Yuan et al., we proposed the extended complex method to seek exact solutions of the (2+1)-dimensional KP equation. The results demonstrate that the applied methods are efficient and direct methods to solve the complex nonlinear systems.


Author(s):  
Shuang Liu ◽  
Yao Ding ◽  
Jian-Guo Liu

AbstractBy employing the generalized$(G'/G)$-expansion method and symbolic computation, we obtain new exact solutions of the (3 + 1) dimensional generalized B-type Kadomtsev–Petviashvili equation, which include the traveling wave exact solutions and the non-traveling wave exact solutions showed by the hyperbolic function and the trigonometric function. Meanwhile, some interesting physics structure are discussed.


Pramana ◽  
2012 ◽  
Vol 78 (4) ◽  
pp. 513-529 ◽  
Author(s):  
ANAND MALIK ◽  
FAKIR CHAND ◽  
HITENDER KUMAR ◽  
S C MISHRA

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Yun-Mei Zhao

A generalized(G′/G)-expansion method is proposed to seek the exact solutions of nonlinear evolution equations. Being concise and straightforward, this method is applied to the Zakharov equations. As a result, some new Jacobi elliptic function solutions of the Zakharov equations are obtained. This method can also be applied to other nonlinear evolution equations in mathematical physics.


Author(s):  
Figen Kangalgil

The investigation of the exact solutions of NLPDEs plays an im- portant role for the understanding of most nonlinear physical phenomena. Also, the exact solutions of this equations aid the numerical solvers to assess the correctness of their results. In this paper, (G'/G)-expansion method is pre- sented to construct exact solutions of the Perturbed Wadati-Segur-Ablowitz equation. Obtained the exact solutions are expressed by the hyperbolic, the trigonometric and the rational functions. All calculations have been made with the aid of Maple program. It is shown that the proposed algorithm is elemen- tary, e¤ective and has been used for many PDEs in mathematical physics.  


Sign in / Sign up

Export Citation Format

Share Document