scholarly journals BALANSING OF POWER AND ELECTRICITY IN THE ELECTRIC POWER SYSTEM WITH RENEWABLE ENERGY SOURCES BY CRITERIONAL METHOD

Author(s):  
Petro Lezhniuk ◽  
Olha Buslavets ◽  
Olena Rubanenko

This article considers the features of the development of renewable energy sources in electrical networks. The main changes in the functional properties of power systems, which include a significant reduction in electricity consumption, change in the structure of electricity consumption, rapid increase in the installed capacity of solar and wind power plants. Electricity consumption in 2020 is almost halved compared to 1990 (from 227 to 119 billion kWh) and as a consequence the share of semi-peak thermal generation, which gave the power system basic flexibility, has significantly decreased (from 71 % in 1990 to 35 % in 2020) and at the same time the share of nuclear generation, which operates in base mode, has increased (from 25 % to 51 %). In particular, consumption by industry with a stable load schedule, decreased (from 146 billion kWh (64 %) to 49 billion kWh (42 %)). At the same time, the demand for electricity by the households, whose consumption profile of which is characterized by significant daily unevenness and sensitivity to meteorological factors, has significantly increased (from 21 billion kWh (9 %) to 37 billion kWh (31 %)). Therefore, the article analyses the preconditions for the problem of flexible generation and explores possible ways to solve them. The optimal composition of electricity generation for Ukraine in the period 2021–2025 is proposed, which provides for the preservation and even increase by optimizing the repair campaign of the share of electricity production by nuclear power plants, the introduction of additional 2–2.5 GW of highly flexible generation and up to 2 GW storage systems (taking into account the pumped-storage power plant), as well as a gradual evolutionary decline in both installed capacity and electricity production by semi-peak coal-fired power plants and maintaining a policy of decarbonisation to ensure its own energy security. A comprehensive approach to compensating for the instability of renewable energy sources generation has been developed, which consists in minimizing the cost of power redundancy in various available ways. The problem of cost optimization for ways to compensate for the instability of renewable energy sources generation is solved by the method of criterion programming. The impact of each backup method on total costs is determined using sensitivity theory.

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2862
Author(s):  
Mika Korkeakoski

Renewable Energy Sources (RES) have become increasingly desirable worldwide in the fight against global climate change. The sharp decrease in costs of especially wind and solar photovoltaics (PV) have created opportunities to move from dependency on conventional fossil fuel-based electricity production towards renewable energy sources. Renewables experience around 7% (in 2018) annual growth rate in the electricity production globally and the pace is expected to further increase in the near future. Cuba is no exception in this regard, the government has set an ambitious renewable energy target of 24% RES of electricity production by the year 2030. The article analyses renewable energy trajectories in Isla de la Juventud, Cuba, through different future energy scenarios utilizing EnergyPLAN tool. The goal is to identify the best fit and least cost options in transitioning towards 100% electric power systemin Isla de la Juventud, Cuba. The work is divided into analysis of (1) technical possibilities for five scenarios in the electricity production with a 40% increase of electricity consumption by 2030: Business As Usual (BAU 2030, with the current electric power system (EPS) setup), VISION 2030 (according to the Cuban government plan with 24% RES), Advanced Renewables (ARES, with 50% RES), High Renewables (HiRES, with 70% RES), and Fully Renewables (FullRES, with 100% RES based electricity system) scenarios and (2) defining least cost options for the five scenarios in Isla de la Juventud, Cuba. The results show that high penetration of renewables is technically possible even up to 100% RES although the best technological fit versus least cost options may not favor the 100% RES based systems with the current electric power system (EPS) setup. This is due to realities in access to resources, especially importation of state of the art technological equipment and biofuels, financial and investment resources, as well as the high costs of storage systems. The analysis shows the Cuban government vision of reaching 24% of RES in the electricity production by 2030 can be exceeded even up to 70% RES based systems with similar or even lower costs in the near future in Isla de la Juventud. However, overcoming critical challenges in the economic, political, and legal conditions are crucially important; how will the implementation of huge national capital investments and significant involvement of Foreign Direct Investments (FDI) actualize to support achievement of the Cuban government’s 2030 vision?


2013 ◽  
Vol 4 (2) ◽  
Author(s):  
Aleksandra Kanevče ◽  
Igor Tomovski ◽  
Ljubčo Kocarev

In this paper we analyze the impact of the renewable energy sources on the overall electric power system of the Republic of Macedonia. Specifically, the effect of the photovoltaic power plants is examined. For this purpose we developed an electricity production optimization model, based on standard network flow model. The renewable energy sources are included in the model of Macedonia based on hourly meteorological data. Electricity producers that exist in 2012 are included in the base scenario. Two more characteristic years are analyzed, i.e. 2015 and 2020. The electricity producers planned to be constructed in these two years (which include the renewable energy sources) are also included. The results show that the renewable energy sources introduce imbalance in the system when the minimum electricity production is higher than the electricity required by the consumers. But, in these critical situations the production from photovoltaic energy sources is zero, which means that they produce electricity during the peak load, and do not produce when the consumption is at minimum.


2018 ◽  
Vol 10 (11) ◽  
pp. 4140 ◽  
Author(s):  
Seungchan Oh ◽  
Heewon Shin ◽  
Hwanhee Cho ◽  
Byongjun Lee

Efforts to reduce greenhouse gas emissions constitute a worldwide trend. According to this trend, there are many plans in place for the replacement of conventional electric power plants operating using fossil fuels with renewable energy sources (RESs). Owing to current needs to expand the RES penetration in accordance to a new National power system plan, the importance of RESs is increasing. The RES penetration imposes various impacts on the power system, including transient stability. Furthermore, the fact that they are distributed at multiple locations in the power system is also a factor which makes the transient impact analysis of RESs difficult. In this study, the transient impacts attributed to the penetration of RESs are analyzed and compared with the conventional Korean electric power system. To confirm the impact of the penetration of RESs on transient stability, the effect was analyzed based on a single machine equivalent (SIME) configuration. Simulations were conducted in accordance to the Korean power system by considering the anticipated RES penetration in 2030. The impact of RES on transient stability was provided by a change in CCT by increasing of the RES penetration.


2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Aleksandra Dedinec ◽  
Igor Tomovski ◽  
Ljupčo Kocarev

This paper is motivated by a large tendency of shift towards low emission electricity production, which can be achieved by substituting the conventional energy sources by renewable energy sources. Therefore, a share of renewable energy sources is continually growing. However, large-scale integration of renewable energy sources into the power system is a challenging task, since it depends on a balance between demand and supply at any time and because of the nature of renewable energy sources. The production from some sources such as the photovoltaic and wind power plants fluctuates depending on meteorological conditions, so it cannot be regulated. However, large hydropower plants can be regulated, so they are suitable for electricity balancing. In this paper, an optimization model is set for a system with 100 % renewable energy sources, which includes models for correlation of meteorological data and the production of electricity from different variable renewable energy sources. The resulting model gives an optimal ratio of production of variable renewable energy sources, which depends on the share of these sources in the total electricity production. The objective function of this optimization problem is to minimize the excess and lack of electricity production. For this purpose, hourly data for electricity consumption and hourly meteorological data are included. The results show that if only wind and photovoltaic power plants are considered, for the case of Macedonia, this optimum is found at 72% wind and 28% photovoltaic power production. However, if the already installed capacity of the big hydropower plants and the maximal potential of the small hydropower plants which make together 30% of the total installed capacity is taken into account, the optimal ratio of production from the other sources is: 50% wind power generation and 20% photovoltaic power generation.


2013 ◽  
Vol 4 (2) ◽  
Author(s):  
Maja Đurović Petrović ◽  
Žarko Stevanović ◽  
Borislav Grubor

At the end of 2012 and the beginning of 2013, the Serbian Government issued the new national regulations in order to provide an acceptable legislation framework to achieve 2020 targets of 27% increase of total renewable energy sources share in the gross final energy consumption, relative to 2009. The target of a 37% increase relates to participation of renewable energy sources in electricity production. It requires construction of new significant capacities of renewable energy power plants as clearly defined in the National Action Plan for Renewable Energy Sources. This paper comprises critical analyses of targeted new installed capacity of renewable energy power plants for electricity production from different point of views, such as: new national energy policy, new national regulations, renewable energy sources potential in Serbia, efficiency of power plants and the investment financial models. According to the new national energy policy identified in the National Action Plan for Renewable Energy Sources, it is concluded that the new regulations related to the construction of new renewable energy power plants is completed, particularly concerning the investment security, provision of green electricity market, status of green electricity producer, and significant reduction of time for administrative procedures required to obtain a building permit. Particularly, the real wind potential in Serbia, based on the measured data over the past ten years of measurement campaigns at more than thirty locations, has been used to correct the targeted installed capacity of wind power plants.


2017 ◽  
Vol 17(32) (2) ◽  
pp. 126-135
Author(s):  
Łukasz Kozar

The article presents changes that occurred in the production of electricity from renewable energy sources in the EU-28 and in Poland in the years of 2010-2015. The analysis of the changes was based on the data from Eurostat and the Local Data Bank. Based on the indicator of the share of electricity generated from renewable sources in gross electricity consumption, Poland in the period under discussion, was characterized as one of the highest dynamics of change among all EU countries. In addition, the article analyzes the situation concerning the production of electricity in Poland in the regional aspect. From the taken analyzes, it is clear that in all voivodeships, apart from Małopolskie voivodeship, in 2015, more electricity was produced from renewable sources compared to 2010. In the period under discussion, the share of electricity production from renewable sources in total electricity production also increased by 99% in Poland.


2010 ◽  
Vol 670 ◽  
pp. 407-414 ◽  
Author(s):  
Emmanuel S. Karapidakis ◽  
Yiannis A. Katsigiannis ◽  
Pavlos S. Georgilakis ◽  
Emmanuel Thalassinakis

In this paper the Crete’s Island power system, which is the largest isolated power system in Greece, is analyzed in two long term scenarios in order to estimate the corresponding costs and benefits associated with a significant high electricity production from renewable energy sources (RES) technologies in the period 2009-2020. In the first scenario, a 20% RES energy penetration in year 2020 is assumed, while in the second scenario the final RES energy penetration is increased to 50%, and it is achieved with the installation of hydro pumped storage systems. Long-range Energy Alternatives Planning (LEAP) software is used to develop the electricity demand model, as well as to estimate the gross electricity generation in Crete and the annual CO2 equivalent emissions for the considered scenarios. This study demonstrates that substantial RES production till 2020 is technically feasible, and provides benefits in the forms of carbon emission reductions, energy adequacy and dependency.


Sign in / Sign up

Export Citation Format

Share Document