STRUCTURE-ACTIVITY-RELATIONSHIP OF THE POLYPHENOLS INHIBITION OF α-AMYLASE AND α-GLUCOSIDASE

Author(s):  
Taiwo Josiah Bamigboye ◽  
Olawuni Julius Idowu ◽  
Olubiyi Oludayo Olujide ◽  
Van Heerden Retif Fanie

Background: Diabetes mellitus (DM) is a serious public health challenge, projected by WHO to be one of the 7 leading cause of death by 2030. Medicinal plants have been demonstrated to be useful in DM local management because of polyphenols present in these plants. For an alternative treatment approach especially with polyphenols-rich herbs, knowledge of comparative efficacy of the polyphenols will lead to enhanced therapy especially in postprandial hyperglyceamic control. Materials and Methods: Vegetative parts of Anacardium occidentale, Abelmoschus ecsulentus and Ceiba pentandra, prominent in the local management of DM were identified, collected and subjected to alcoholic extraction. From the crude extracts were isolated agathisflavone, quercetin 3-O-glucoside, quercetin 3-O-diglycoside, mangiferin, isomangiferin and pentagalloyl glucose, belonging to flavonoid, xanthones and tannins structural classes. These polyphenols were evaluated for their potentials to inhibit both α-glucosidase and α-amylase. Physicochemical parameters of the polyphenols were evaluated and molecular docking experiments were carried out to gain insight into the observed inhibitory activity. Results: quercetin 3-O-glucosidewas the most potent of the polyphenols against the two enzymes. Increase in the number of phenolic hydroxyl group did not increase the inhibitory activity and neither computation of the binding energies with the enzymes nor physicochemical parameters of the polyphenols could explain the observed inhibitory activity against the enzymes, across the structural classes. Thus, only the bioassay against the enzymes α-glucosidase and α-amylase correlated well with the use of the plants in treating diabetic mellitus Conclusion: Medicinal plants rich in quercetin 3-O-glycoside may have better treatment outcomes in postprandial hyperglycaemia control.

2018 ◽  
pp. 17
Author(s):  
Jameel A. Al Khuzai ◽  
Abdul Ameer A. Al Laith ◽  
Afnan M. Freije

2018 ◽  
Vol 15 (7) ◽  
pp. 796-812
Author(s):  
Saliha Bouknana ◽  
Mohamed Bouhrim ◽  
Hayat Ouassou ◽  
Mohamed Bnouham

2020 ◽  
Vol 15 (3) ◽  
pp. 264-273
Author(s):  
Syeda Sabiha Salam ◽  
Pankaj Chetia ◽  
Devid Kardong

Background: Malaria is endemic in various parts of India particularly in the North- Eastern states with Plasmodium falciparum-the most prevalent human malaria parasite. Plantderived compounds have always received tremendous importance in the area of drug discovery and development and scientific study of traditional medicinal plants are of great importance to mankind. Objective: The present work deals with the computational study of some antimalarial compounds obtained from a few medicinal plants used by the tribal inhabitants of the North-Eastern region of India for treating malaria. Methods: In silico methodologies were performed to study the ligand-receptor interactions. Target was identified based on the pharmacophore mapping approach. A total of 18 plant-derived compounds were investigated in order to estimate the binding energies of the compounds with their drug target through molecular docking using Autodock 4.2. ADMET filtering for determining the pharmacokinetic properties of the compounds was done using Mobyle@RPBS server. Subsequent Quantitative-Structure Activity Relationship analysis for bioactivity prediction (IC50) of the compounds was done using Easy QSAR 1.0. Results: The docking result identified Salannin to be the most potent Plasmepsin II inhibitor while the QSAR analysis identified Lupeol to have the least IC50 value. Most of the compounds have passed the ADME/Tox filtration. Conclusion: Salannin and Lupeol were found to be the most potent antimalarial compounds that can act as successful inhibitors against Plasmepsin II of P. falciparum. The compounds Salannin and Lupeol are found in Azadirachta indica and Swertia chirata plants respectively, abundantly available in the North-Eastern region of India and used by many inhabiting tribes for the treatment of malaria and its symptoms.


2017 ◽  
Vol 15 (3) ◽  
pp. 547-554
Author(s):  
Neda Babazadeh Share ◽  
Hafezeh Salehabadi ◽  
Farnoush Zeidabadi ◽  
Effat Souri ◽  
Massoud Amanlou

2020 ◽  
Author(s):  
Suritra Bandyopadhyay ◽  
Omobolanle Abimbola Abiodun ◽  
Blessing Chinweotito Ogboo ◽  
Adeola Tawakalitu Kola-Mustapha ◽  
Emmanuel Ifeanyi Attah ◽  
...  

<p><b>Background: </b>Medicinal plants, as rich sources of bioactive compounds with antiviral properties, are now being explored for the development of drugs against SARS-CoV-2.</p><p><b>Aims: </b>Identification of promising compounds for the treatment of COVID-19 from natural products via molecular modelling against NSP9, including some other viral and host targets and evaluation of polypharmacological indications.</p><p><b>Main methods: </b>A manually curated library of 521 phytochemicals (from 19 medicinal plants) was virtually screened using Mcule server and binding interactions were studied using DS Visualiser. Docking thresholds were set based on the scores of standard controls and rigorous ADMET properties were used to finally get the potential inhibitors. Free binding energies of the docked complexes were calculated employing MM-GBSA method. MM-GBSA informed our choice for MD simulation studies performed against NSP9 to study the stability of the drug-receptor interaction. NSP9 structure comparison was also performed. </p><p><b>Key findings: </b>Extensive screening of the molecules identified 5 leads for NSP9, 23 for Furin, 18 for ORF3a, and 19 for interleukin-6. Ochnaflavone and Licoflavone B, obtained from Lonicera japonica (Japanese Honeysuckle) and Glycyrrhiza glabra (Licorice), respectively, were identified to have the highest potential multi-target inhibition properties for NSP9, furin, ORF3a, and IL-6. Additionally, molecular dynamics simulation supports the robust stability of Ochnaflavone and Licoflavone B against NSP9 at the active sites via hydrophobic interactions, H-bonding, and H-bonding facilitated by water.</p><b>Significance:</b> These compounds with the highest drug-like ranking against multiple viral and host targets have the potential to be drug candidates for the treatment of SARS-CoV-2 infection that may possibly act on multiple pathways simultaneously to inhibit viral entry and replication as well as disease progression.


2020 ◽  
Vol 3 (10) ◽  
pp. 266-275
Author(s):  
Shaleen Jain ◽  
Dr. Asmita Das

Facing worldwide challenges associated with multifactorial etiology of breast cancer, designing of combinatorial therapies using natural compounds is currently the emergent way of treating several cancers including breast cancer in a synergistic way, which may mitigate several problems associated with multiple receptor targeting. In this research, Estrogen receptor positive breast cancer was taken as prototype and several key receptors associated with this particular disease were targeted by virtual screening of natural compounds found in Indian originated medicinal plants using Computer aided Drug Designing (CADD) strategies. We found the combination of Carpusin, Paulownin Cornigerine, Nororientaline, Oryzalexin B, Romucosine H and Colchicine as effective against six potential receptors i.e. FGFR2, ESR1, PIK3CA, PIK3CB, PIK3CD and AR in Estrogen receptor positive breast cancer with their binding energies in the range of ∆G ≤ -8.0 Kcal/mol as well as significant number of common amino acid binding residues as compared with binding sites of receptors. Thus this research holds significant implications for the designing of combinatorial therapeutic agents against breast cancer which can be further tested in-vitro and in-vivo to prove their synergistic efficiency.


2001 ◽  
Vol 49 (11) ◽  
pp. 1457-1463 ◽  
Author(s):  
Yuko TSUDA ◽  
Mayako TADA ◽  
Keiko WANAKA ◽  
Utako OKAMOTO ◽  
Akiko HIJIKATA-OKUNOMIYA ◽  
...  

2012 ◽  
Vol 6 (6) ◽  
pp. 406-415 ◽  
Author(s):  
I. Batubara ◽  
S. Kotsuka ◽  
K. Yamauchi ◽  
H. Kuspradini ◽  
T. Mitsunaga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document