scholarly journals Contribution of an interharmonic component to the sine-wave parameters estimators returned by the interpolated Discrete Fourier transform algorithm

ACTA IMEKO ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 17
Author(s):  
Daniel Belega ◽  
Dario Petri ◽  
Dominique Dallet

<p class="Abstract">This article investigates the contribution of a small-amplitude interharmonic component to the sine-wave parameter estimators returned by the classical interpolated discrete Fourier transform (IpDFT) algorithm. The analytical expressions for the frequency, amplitude, and phase estimation errors are derived herein by considering the IpDFT algorithm based on the maximum sidelobe decay (MSD) windows and by assuming the interharmonic frequency located at least one bin apart the unknown sine-wave frequency. The derived expressions allow us to analyse the impact of an interharmonic on the accuracies of the IpDFT frequency, amplitude, and phase estimators. The accuracies of the derived expressions are verified by means of both computer simulations and experimental results.</p>

Author(s):  
E. A. Romaniuk ◽  
V. Yu. Rumiantsev ◽  
Yu. V. Rumiantsev ◽  
A. A. Dziaruhina

Digital filters made with the use of discrete Fourier Transform are applied in most microprocessor protections produced both in the home country and abroad. When the input signal frequency deviates from the value to which these filters are configured, a signal is generated at their output with oscillation amplitude that is proportional to the deviation of the signal frequency from the specified one. The article proposes an algorithm for compensating the oscillations of orthogonal components of the output signals of digital filters implemented on the basis of a discrete Fourier transform, when the input signal frequency deviates from the nominal one. A mathematical model of the proposed digital filter with an algorithm for compensating the oscillations of its orthogonal components, as well as a signal model for reproducing input effects, is implemented in the MatLab-Simulink dynamic modeling environment. The digital filter model is provided with two channels, viz. a current channel and a voltage channel, which makes it possible to simulate their operation in relation to protections that use one or two input values, for example, for current and remote protection. Verification of the functioning of the digital filter model with compensation for fluctuations in its output signal was carried out with the use of two types of test effects, viz. a sinusoidal signal with a frequency of 48–51 Hz (idealized effect), and the effects that are close to the real secondary signals of measuring current transformers and voltage transformers in case of short circuits accompanied by a decrease in frequency. The conducted computational experiments with deviation of frequency from the nominal one, revealed the presence of undamped oscillations at the output of standard digital Fourier filters and their almost complete absence in the proposed digital filters. This makes us possible to recommend digital filters based on a discrete Fourier transform supplemented by an algorithm for compensation of fluctuations in the amplitudes of the output signals for the use in microprocessor protection.


Akustika ◽  
2020 ◽  
Vol 36 (36) ◽  
pp. 25-32
Author(s):  
Jaroslav Smutný ◽  
Dušan Janoštík ◽  
Viktor Nohál

The goal of this study is to familiarize a wider professional public with not fully known procedures suitable for processing measured data in the frequency area. Described is the use of the so-called Multi-taper method to analyze the acoustic response. This transformation belongs to a group of nonparametric methods outgoing from discrete Fourier transform, and this study includes its mathematical analysis and description. In addition, the use of respective method in a specific application area and recommendations for practice are described.


Sign in / Sign up

Export Citation Format

Share Document