Histological and Biochemical Evaluation of Perichondrial Transplants in Human Articular Cartilage Defects

2000 ◽  
Vol 82 (4) ◽  
pp. 48
Author(s):  
Phianne Bouwmeester ◽  
Roel Kuijer ◽  
Els Terwindt-Rouwenhorst ◽  
Ton van der Linden ◽  
Sjoerd Bulstra
1999 ◽  
Vol 17 (6) ◽  
pp. 843-849 ◽  
Author(s):  
Phianne Bouwmeester ◽  
Roel Kuijer ◽  
Els Terwindt-Rouwenhorst ◽  
Ton van der Linden ◽  
Sjoerd Bulstra

2013 ◽  
Vol 703 ◽  
pp. 29-32 ◽  
Author(s):  
Hou Jiang Yuan ◽  
Zhou Jian Wei ◽  
Xia Zhen Yu

Polyvinyl alcohol hydrogel has compatibility and biomechanical properties of human articular cartilage similar and good biological. The implantation in the human body can replace part of articular cartilage, which plays the role of bearing and alleviate the impact force. It has the prospect of clinical application. This paper introduces the research progress of polyvinyl alcohol hydro-gel materials. And compared with the characteristics of articular cartilage, clarify the possibility of repair of articular cartilage defects of the materials.


Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 92
Author(s):  
John Garcia ◽  
Helen S. McCarthy ◽  
Jan Herman Kuiper ◽  
James Melrose ◽  
Sally Roberts

Articular cartilage is considered to have limited regenerative capacity, which has led to the search for therapies to limit or halt the progression of its destruction. Perlecan, a multifunctional heparan sulphate (HS) proteoglycan, promotes embryonic cartilage development and stabilises the mature tissue. We investigated the immunolocalisation of perlecan and collagen between donor-matched biopsies of human articular cartilage defects (n = 10 × 2) that were repaired either naturally or using autologous cell therapy, and with age-matched normal cartilage. We explored how the removal of HS from perlecan affects human chondrocytes in vitro. Immunohistochemistry showed both a pericellular and diffuse matrix staining pattern for perlecan in both natural and cell therapy repaired cartilage, which related to whether the morphology of the newly formed tissue was hyaline cartilage or fibrocartilage. Immunostaining for perlecan was significantly greater in both these repair tissues compared to normal age-matched controls. The immunolocalisation of collagens type III and VI was also dependent on tissue morphology. Heparanase treatment of chondrocytes in vitro resulted in significantly increased proliferation, while the expression of key chondrogenic surface and genetic markers was unaffected. Perlecan was more prominent in chondrocyte clusters than in individual cells after heparanase treatment. Heparanase treatment could be a means of increasing chondrocyte responsiveness to cartilage injury and perhaps to improve repair of defects.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Kezhou Wu ◽  
Nadia Shardt ◽  
Leila Laouar ◽  
Janet A. W. Elliott ◽  
Nadr M. Jomha

AbstractPreserving viable articular cartilage is a promising approach to address the shortage of graft tissue and enable the clinical repair of articular cartilage defects in articulating joints, such as the knee, ankle, and hip. In this study, we developed two 2-step, dual-temperature, multicryoprotectant loading protocols to cryopreserve particulated articular cartilage (cubes ~1 mm3 in size) using a mathematical approach, and we experimentally measured chondrocyte viability, metabolic activity, cell migration, and matrix productivity after implementing the designed loading protocols, vitrification, and warming. We demonstrated that porcine and human articular cartilage cubes can be successfully vitrified and rewarmed, maintaining high cell viability and excellent cellular function. The vitrified particulated articular cartilage was stored for a period of 6 months with no significant deterioration in chondrocyte viability and functionality. Our approach enables high-quality long-term storage of viable articular cartilage that can alleviate the shortage of grafts for use in clinically repairing articular cartilage defects.


Author(s):  
Zhong Li ◽  
Yikang Bi ◽  
Qi Wu ◽  
Chao Chen ◽  
Lu Zhou ◽  
...  

AbstractTo evaluate the performance of a composite scaffold of Wharton’s jelly (WJ) and chondroitin sulfate (CS) and the effect of the composite scaffold loaded with human umbilical cord mesenchymal stem cells (hUCMSCs) in repairing articular cartilage defects, two experiments were carried out. The in vitro experiments involved identification of the hUCMSCs, construction of the biomimetic composite scaffolds by the physical and chemical crosslinking of WJ and CS, and testing of the biomechanical properties of both the composite scaffold and the WJ scaffold. In the in vivo experiments, composite scaffolds loaded with hUCMSCs and WJ scaffolds loaded with hUCMSCs were applied to repair articular cartilage defects in the rat knee. Moreover, their repair effects were evaluated by the unaided eye, histological observations, and the immunogenicity of scaffolds and hUCMSCs. We found that in vitro, the Young’s modulus of the composite scaffold (WJ-CS) was higher than that of the WJ scaffold. In vivo, the composite scaffold loaded with hUCMSCs repaired rat cartilage defects better than did the WJ scaffold loaded with hUCMSCs. Both the scaffold and hUCMSCs showed low immunogenicity. These results demonstrate that the in vitro construction of a human-derived WJ-CS composite scaffold enhances the biomechanical properties of WJ and that the repair of knee cartilage defects in rats is better with the composite scaffold than with the single WJ scaffold if the scaffold is loaded with hUCMSCs.


1999 ◽  
Vol 65 (5) ◽  
pp. 402-407 ◽  
Author(s):  
A. Carranza-Bencano ◽  
M. Perez-Tinao ◽  
P. Ballesteros-Vazquez ◽  
J. R. Armas-Padron ◽  
A. Hevia-Alonso ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document