THE GEOLOGICAL EVIDENCE FOR TRIASSIC TO PLEISTOCENE GLACIATIONS: IMPLICATIONS FOR EUSTASY

Author(s):  
PAUL J. MARKWICK ◽  
DAVID B. ROWLEY
2021 ◽  
pp. 016224392110345
Author(s):  
James Maguire

This paper explores an informal acoustic method developed by a group of industrial geologists working in geothermal energy landscapes in the southwest of Iceland. Through a series of ethnographic descriptions, this paper renders the work these geologists carry out in sonic terms, emphasizing how they use their bodies as sonic detectors in the production of geological evidence. Sound, the paper argues, is what allows geologists to make the intractable problem of volcanic cooling doable. It does this by differentiating two forms of evidence. Primary evidence, which ends up as data in geological reports, and secondary sonic evidence, which is what establishes that this primary evidence is, in fact, evidence. The paper introduces the concept data echoes as a way to think about how sound articulates between these evidential protocols. As echo, sound works as an outside, which, while remaining external to official protocols of knowledge production, nevertheless helps to constitute distinctions that are meaningful to the production of those categories. As data echoes through the various moments of data capture, analysis, and model building, sound’s temporal form helps to predict the time frame of volcanic cooling, as it affects both the immediate energy production scenarios and the long durée of volcanic time.


Geosciences ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 408 ◽  
Author(s):  
King ◽  
Quigley ◽  
Clark

We digitize surface rupture maps and compile observational data from 67 publications on ten of eleven historical, surface-rupturing earthquakes in Australia in order to analyze the prevailing characteristics of surface ruptures and other environmental effects in this crystalline basement-dominated intraplate environment. The studied earthquakes occurred between 1968 and 2018, and range in moment magnitude (Mw) from 4.7 to 6.6. All earthquakes involved co-seismic reverse faulting (with varying amounts of strike-slip) on single or multiple (1–6) discrete faults of ≥ 1 km length that are distinguished by orientation and kinematic criteria. Nine of ten earthquakes have surface-rupturing fault orientations that align with prevailing linear anomalies in geophysical (gravity and magnetic) data and bedrock structure (foliations and/or quartz veins and/or intrusive boundaries and/or pre-existing faults), indicating strong control of inherited crustal structure on contemporary faulting. Rupture kinematics are consistent with horizontal shortening driven by regional trajectories of horizontal compressive stress. The lack of precision in seismological data prohibits the assessment of whether surface ruptures project to hypocentral locations via contiguous, planar principal slip zones or whether rupture segmentation occurs between seismogenic depths and the surface. Rupture centroids of 1–4 km in depth indicate predominantly shallow seismic moment release. No studied earthquakes have unambiguous geological evidence for preceding surface-rupturing earthquakes on the same faults and five earthquakes contain evidence of absence of preceding ruptures since the late Pleistocene, collectively highlighting the challenge of using mapped active faults to predict future seismic hazards. Estimated maximum fault slip rates are 0.2–9.1 m Myr-1 with at least one order of uncertainty. New estimates for rupture length, fault dip, and coseismic net slip can be used to improve future iterations of earthquake magnitude—source size—displacement scaling equations. Observed environmental effects include primary surface rupture, secondary fracture/cracks, fissures, rock falls, ground-water anomalies, vegetation damage, sand-blows / liquefaction, displaced rock fragments, and holes from collapsible soil failure, at maximum estimated epicentral distances ranging from 0 to ~250 km. ESI-07 intensity-scale estimates range by ± 3 classes in each earthquake, depending on the effect considered. Comparing Mw-ESI relationships across geologically diverse environments is a fruitful avenue for future research.


1997 ◽  
Vol 24 (1-4) ◽  
pp. 67-86 ◽  
Author(s):  
Alessandro Maria Michetti ◽  
Luca Ferreli ◽  
Leonello Serva ◽  
Eutizio Vittori

2013 ◽  
Vol 54 (64) ◽  
pp. 10-20 ◽  
Author(s):  
Andrew J. Stumpf ◽  
Ahmed Ismail

Abstract High-resolution seismic reflection (HRSR) data acquired over the Pesotum Bedrock Valley in central Illinois, USA, helped construct the seismic stratigraphy of a valley fill and the overlying sediments. Integrating these data with drilling and borehole geophysics allowed us to develop a seismo-stratigraphic classification for sediments on undulating and folded bedrock. Seven seismo-stratigraphic units that overlie the bedrock surface were characterized. Seismic units A and B include glacial sediments of multiple Pleistocene glaciations above the Pesotum Bedrock Valley, which completely mask the feature. Seismic units C–F, the valley fill, primarily include tills and glacial lake sediment deposited during the earliest Pleistocene glaciations and preglacial alluvium and colluvium that is draped over in situ weathered bedrock. The preservation of conformable-lying glacial and preglacial deposits and paucity of sand and gravel in the buried valley strongly indicate that little or no incision by glacial meltwaters has occurred. These observations contrast markedly with interpretations from buried valleys elsewhere in North America and northern Europe where valley fills contain significant deposits of sand and gravel in tunnel valleys. The HRSR data assisted the characterization and analysis of heterogeneous sedimentary sequences over a buried valley where existing subsurface information was limited. The extent of Pleistocene-age glacial lakes is inferred from the lateral continuity of silt and clay units.


Physiological evidence has long been used to suggest that the gnathostomous vertebrates (those possessing jaws) were primitively fresh water. The same was also the case for the Osteichthyes (bony fish) and the Tetrapoda (Amphibia, Reptilia, Aves, Mammalia). However, the geological evidence favours a marine origin for the vertebrates as a whole, and, for the gnathostomes and the osteichthyans in particular. Some of the earliest amphibian remains may be associated with tidally influenced sediments. Furthermore, during the early part of the Devonian, fresh water chemistry may well have been different from that of today, lessening the divide between marine and non-marine environments. Urea formation via the ornithine cycle, and urea retention in the body fluids, are useful adaptations for terrestrial life. They prevent excessive water loss associated with the elimination of nitrogenous waste. These abilities may have been primitive for the gnathostomes, and were developed in the marine environment to reduce osmotic dehydration. In the .aqueous medium, gaseous exchange is effected by the gills. These organs are, on the whole, useless in air. For vertebrates, air-breathing is effected by an inflatable sac, with moist linings, and an internal location. Some form of air-breathing sac was primitive for the osteichthyans, and may have been primitive for the gnathostomes. Again, this adaptation for terrestrial life developed in response to conditions experienced in the marine, aquatic environment. A new model of tetrapod evolution is proposed in the light of the basic marine origin and character of the ancestors of the tetrapods.


Sign in / Sign up

Export Citation Format

Share Document