scholarly journals Interplanetary Dust as a Foreground for the LiteBIRD CMB Satellite Mission

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ken Ganga ◽  
Michele Maris ◽  
Mathieu Remazeilles ◽  
1999 ◽  
Author(s):  
Tom Riebe ◽  
John Haaren
Keyword(s):  

2018 ◽  
Author(s):  
Katherine Burgess ◽  
◽  
David Bour ◽  
Rhonda M. Stroud ◽  
Anais Bardyn ◽  
...  

Author(s):  
Karel Schrijver

In this chapter, the author summarizes the properties of the Solar System, and how these were uncovered. Over centuries, the arrangement and properties of the Solar System were determined. The distinctions between the terrestrial planets, the gas and ice giants, and their various moons are discussed. Whereas humans have walked only on the Moon, probes have visited all the planets and several moons, asteroids, and comets; samples have been returned to Earth only from our moon, a comet, and from interplanetary dust. For Earth and Moon, seismographs probed their interior, whereas for other planets insights come from spacecraft and meteorites. We learned that elements separated between planet cores and mantels because larger bodies in the Solar System were once liquid, and many still are. How water ended up where it is presents a complex puzzle. Will the characteristics of our Solar System hold true for planetary systems in general?


1985 ◽  
Vol 85 ◽  
pp. 365-368
Author(s):  
S. Ibadov

AbstractThe intensity of solar X-radiation scattered by a comet is calculated and compared to the proper X-radiation of the comet due to impacts of cometary and interplanetary dust particles. Detection of X-radiation of dusty comets at small heliocentric distances (R ≤ 1 a.u.) is found to be an indicator of high-temperature plasma generation as result of grain collisions.


Author(s):  
Ujjal Purkayastha ◽  
Vipin Sudevan ◽  
Rajib Saha

Abstract Recently, the internal-linear-combination (ILC) method was investigated extensively in the context of reconstruction of Cosmic Microwave Background (CMB) temperature anisotropy signal using observations obtained by WMAP and Planck satellite missions. In this article, we, for the first time, apply the ILC method to reconstruct the large scale CMB E mode polarization signal, which could probe the ionization history, using simulated observations of 15 frequency CMB polarization maps of future generation Cosmic Origin Explorer (COrE) satellite mission. We find that the clean power spectra, from the usual ILC, are strongly biased due to non zero CMB-foregrounds chance correlations. In order to address the issues of bias and errors we extend and improve the usual ILC method for CMB E mode reconstruction by incorporating prior information of theoretical E mode angular power spectrum while estimating the weights for linear combination of input maps (Sudevan & Saha 2018b). Using the E mode covariance matrix effectively suppresses the CMB-foreground chance correlation power leading to an accurate reconstruction of cleaned CMB E mode map and its angular power spectrum. We compare the performance of the usual ILC and the new method over large angular scales and show that the later produces significantly statistically improved results than the former. The new E mode CMB angular power spectrum contains neither any significant negative bias at the low multipoles nor any positive foreground bias at relatively higher mutlipoles. The error estimates of the cleaned spectrum agree very well with the cosmic variance induced error.


2021 ◽  
Vol 13 (5) ◽  
pp. 915
Author(s):  
Elias C. Massoud ◽  
Zhen Liu ◽  
Amin Shaban ◽  
Mhamad Hage

Regions with high productivity of agriculture, such as the Beqaa Plain, Lebanon, often rely on groundwater supplies for irrigation demand. Recent reports have indicated that groundwater consumption in this region has been unsustainable, and quantifying rates of groundwater depletion has remained a challenge. Here, we utilize 15 years of data (June 2002–April 2017) from the Gravity Recovery and Climate Experiment (GRACE) satellite mission to show Total Water Storage (TWS) changes in Lebanon’s Beqaa Plain. We then obtain complimentary information on various hydrologic cycle variables, such as soil moisture storage, snow water equivalent, and canopy water storage from the Global Land Data Assimilation System (GLDAS) model, and surface water data from the largest body of water in this region, the Qaraaoun Reservoir, to disentangle the TWS signal and calculate groundwater storage changes. After combining the information from the remaining hydrologic cycle variables, we determine that the majority of the losses in TWS are due to groundwater depletion in the Beqaa Plain. Results show that the rate of groundwater storage change in the West Beqaa is nearly +0.08 cm/year, in the Rashaya District is −0.01 cm/year, and in the Zahle District the level of depletion is roughly −1.10 cm/year. Results are confirmed using Sentinel-1 interferometric synthetic aperture radar (InSAR) data, which provide high-precision measurements of land subsidence changes caused by intense groundwater usage. Furthermore, data from local monitoring wells are utilized to further showcase the significant drop in groundwater level that is occurring through much of the region. For monitoring groundwater storage changes, our recommendation is to combine various data sources, and in areas where groundwater measurements are lacking, we especially recommend the use of data from remote sensing.


GPS Solutions ◽  
2021 ◽  
Vol 25 (2) ◽  
Author(s):  
Yohannes Getachew Ejigu ◽  
Felix Norman Teferle ◽  
Anna Klos ◽  
Bogusz Janusz ◽  
Addisu Hunegnaw

AbstractWe have reconstructed integrated water vapor (IWV) using the zenith wet delays to track the properties of hurricanes and explore their spatial and temporal distributions estimated from 922 GPS stations. Our results show that a surge in GPS-derived IWV occurred at least six hours prior to the landfall of two major hurricanes (Harvey and Irma) that struck the Gulf and East Coasts of the USA in 2017. We observed enhanced IWV, in particular, for the two hurricanes landfall locations. The observed variations exhibit a correlation with the precipitation value constructed from GPM/IMERG satellite mission coinciding with hurricane storm front passage. We used GPS-IWV data as inputs for spaghetti line plots for our path predictions, helping us predict the paths of Hurricanes Harvey and Irma. Hence, a directly estimable zenith wet delay sourced from GPS that has not been previously reported can serve as an additional resource for improving the monitoring of hurricane paths.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  

AbstractIn this perspective, we outline that a space borne gravitational wave detector network combining LISA and Taiji can be used to measure the Hubble constant with an uncertainty less than 0.5% in ten years, compared with the network of the ground based gravitational wave detectors which can measure the Hubble constant within a 2% uncertainty in the next five years by the standard siren method. Taiji is a Chinese space borne gravitational wave detection mission planned for launch in the early 2030 s. The pilot satellite mission Taiji-1 has been launched in August 2019 to verify the feasibility of Taiji. The results of a few technologies tested on Taiji-1 are presented in this paper.


2020 ◽  
Vol 501 (1) ◽  
pp. 1168-1187
Author(s):  
Vishal Ray ◽  
Daniel J Scheeres

ABSTRACT The analytical theory of satellite orbits in an atmosphere developed by King-Hele remains widely in use for satellite mission design because of its accurate approximation to numerical integration under simplifying assumptions. Over the course of six decades, modifications to the theory have addressed many of its weaknesses. However, in all subsequent modifications of the original theory, the assumption of a constant drag-coefficient has been retained. The drag-coefficient is a dynamic parameter that governs the physical interaction between the atmosphere and the satellite and depends on ambient as well as satellite specific factors. In this work, Fourier series expansion models of the drag-coefficient are incorporated in the original King-Hele theory to capture time-variations of the drag-coefficient in averaging integrals. The modified theory is validated through simulations that demonstrate the attained improvements in approximating numerical results over the original King-Hele formulation.


Sign in / Sign up

Export Citation Format

Share Document