scholarly journals lenstronomy II: A gravitational lensing software ecosystem

2021 ◽  
Vol 6 (62) ◽  
pp. 3283
Author(s):  
Simon Birrer ◽  
Anowar Shajib ◽  
Daniel Gilman ◽  
Aymeric Galan ◽  
Jelle Aalbers ◽  
...  
Author(s):  
Bahram Mashhoon

A postulate of locality permeates through the special and general theories of relativity. First, Lorentz invariance is extended in a pointwise manner to actual, namely, accelerated observers in Minkowski spacetime. This hypothesis of locality is then employed crucially in Einstein’s local principle of equivalence to render observers pointwise inertial in a gravitational field. Field measurements are intrinsically nonlocal, however. To go beyond the locality postulate in Minkowski spacetime, the past history of the accelerated observer must be taken into account in accordance with the Bohr-Rosenfeld principle. The observer in general carries the memory of its past acceleration. The deep connection between inertia and gravitation suggests that gravity could be nonlocal as well and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein’s theory of gravitation has recently been developed. In this nonlocal gravity (NLG) theory, the gravitational field is local, but satisfies a partial integro-differential field equation. A significant observational consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. The implications of NLG are explored in this book for gravitational lensing, gravitational radiation, the gravitational physics of the Solar System and the internal dynamics of nearby galaxies as well as clusters of galaxies. This approach is extended to nonlocal Newtonian cosmology, where the attraction of gravity fades with the expansion of the universe. Thus far only some of the consequences of NLG have been compared with observation.


1997 ◽  
Vol 486 (2) ◽  
pp. 681-686 ◽  
Author(s):  
Ariyeh H. Maller ◽  
Ricardo A. Flores ◽  
Joel R. Primack

2018 ◽  
Vol 613 ◽  
pp. A15 ◽  
Author(s):  
Patrick Simon ◽  
Stefan Hilbert

Galaxies are biased tracers of the matter density on cosmological scales. For future tests of galaxy models, we refine and assess a method to measure galaxy biasing as a function of physical scalekwith weak gravitational lensing. This method enables us to reconstruct the galaxy bias factorb(k) as well as the galaxy-matter correlationr(k) on spatial scales between 0.01hMpc−1≲k≲ 10hMpc−1for redshift-binned lens galaxies below redshiftz≲ 0.6. In the refinement, we account for an intrinsic alignment of source ellipticities, and we correct for the magnification bias of the lens galaxies, relevant for the galaxy-galaxy lensing signal, to improve the accuracy of the reconstructedr(k). For simulated data, the reconstructions achieve an accuracy of 3–7% (68% confidence level) over the abovek-range for a survey area and a typical depth of contemporary ground-based surveys. Realistically the accuracy is, however, probably reduced to about 10–15%, mainly by systematic uncertainties in the assumed intrinsic source alignment, the fiducial cosmology, and the redshift distributions of lens and source galaxies (in that order). Furthermore, our reconstruction technique employs physical templates forb(k) andr(k) that elucidate the impact of central galaxies and the halo-occupation statistics of satellite galaxies on the scale-dependence of galaxy bias, which we discuss in the paper. In a first demonstration, we apply this method to previous measurements in the Garching-Bonn Deep Survey and give a physical interpretation of the lens population.


2021 ◽  
Vol 32 ◽  
pp. 100798
Author(s):  
Gulmina Zaman Babar ◽  
Farruh Atamurotov ◽  
Abdullah Zaman Babar

2021 ◽  
Vol 103 (10) ◽  
Author(s):  
Tien Hsieh ◽  
Da-Shin Lee ◽  
Chi-Yong Lin

2021 ◽  
Vol 26 (3) ◽  
Author(s):  
Bodin Chinthanet ◽  
Raula Gaikovina Kula ◽  
Shane McIntosh ◽  
Takashi Ishio ◽  
Akinori Ihara ◽  
...  

AbstractSecurity vulnerability in third-party dependencies is a growing concern not only for developers of the affected software, but for the risks it poses to an entire software ecosystem, e.g., Heartbleed vulnerability. Recent studies show that developers are slow to respond to the threat of vulnerability, sometimes taking four to eleven months to act. To ensure quick adoption and propagation of a release that contains the fix (fixing release), we conduct an empirical investigation to identify lags that may occur between the vulnerable release and its fixing release (package-side fixing release). Through a preliminary study of 231 package-side fixing release of npm projects on GitHub, we observe that a fixing release is rarely released on its own, with up to 85.72% of the bundled commits being unrelated to a fix. We then compare the package-side fixing release with changes on a client-side (client-side fixing release). Through an empirical study of the adoption and propagation tendencies of 1,290 package-side fixing releases that impact throughout a network of 1,553,325 releases of npm packages, we find that stale clients require additional migration effort, even if the package-side fixing release was quick (i.e., package-side fixing releasetypeSpatch). Furthermore, we show the influence of factors such as the branch that the package-side fixing release lands on and the severity of vulnerability on its propagation. In addition to these lags we identify and characterize, this paper lays the groundwork for future research on how to mitigate propagation lags in an ecosystem.


Sign in / Sign up

Export Citation Format

Share Document