Changes in Residence Time due to Large-Scale Infrastructure in a Coastal Plain Estuary

2017 ◽  
Vol 33 (4) ◽  
pp. 815-828 ◽  
Author(s):  
Steven D. Meyers ◽  
Amanda J. Moss ◽  
Mark E. Luther
2013 ◽  
Vol 37 (2) ◽  
pp. 493-507 ◽  
Author(s):  
Steven D. Meyers ◽  
Amanda J. Linville ◽  
Mark E. Luther

2013 ◽  
Vol 28 (1) ◽  
pp. 175-193 ◽  
Author(s):  
Joseph B. Pollina ◽  
Brian A. Colle ◽  
Joseph J. Charney

Abstract This study presents a spatial and temporal climatology of major wildfire events, defined as >100 acres burned (>40.47 ha, where 1 ha = 2.47 acre), in the northeast United States from 1999 to 2009 and the meteorological conditions associated with these events. The northeast United States is divided into two regions: region 1 is centered over the higher terrain of the northeast United States and region 2 is primarily over the coastal plain. About 59% of all wildfire events in these two regions occur in April and May, with ~76% in region 1 and ~53% in region 2. There is large interannual variability in wildfire frequency, with some years having 4–5 times more fire events than other years. The synoptic flow patterns associated with northeast United States wildfires are classified using the North American Regional Reanalysis. The most common synoptic pattern for region 1 is a surface high pressure system centered over the northern Appalachians, which occurred in approximately 46% of all events. For region 2, the prehigh anticyclone type extending from southeast Canada and the Great Lakes to the northeast United States is the most common pattern, occurring in about 46% of all events. A trajectory analysis highlights the influence of large-scale subsidence and decreasing relative humidity during the events, with the prehigh pattern showing the strongest subsidence and downslope drying in the lee of the Appalachians.


2021 ◽  
Author(s):  
Siddhartha Sarkar ◽  
Ajayeta Rathi ◽  
Sanjeev Kumar

<p>Recent decades have witnessed large scale modifications in the natural flow regime of river systems. What follows are shifts in various instream processes that ultimately govern the air-water fluxes of major greenhouse gases (GHGs) like CH<sub>4</sub>, CO<sub>2</sub>, and N<sub>2</sub>O. However, due to paucity of data, the process dynamics and controls on fluxes of GHGs in tropical rivers are understudied, contributing to uncertainty in their global budget. In this study, an attempt was made to estimate the fluxes of GHGs and thereby decipher the controls on evasive processes in an anthropogenically affected Sabarmati River (catchment ~ 27,674 km<sup>2</sup> and channel length ~371 km) located in semi-arid western India. After originating from a relatively pristine region, Sabarmati passes through a major twin city (Ahmedabad-Gandhinagar), where construction of a riverfront resulted in increased residence time of water within the city limits.</p><p>To compare and understand changes in in-stream biogeochemical processes as a result of human interventions, sampling was carried out at 50 sites along the Sabarmati river continuum and a parallel running, but not so anthropogenically modified, Mahi River along with their tributaries. Results indicated relatively lower fluxes of GHGs in pristine upstream of Sabarmati and Mahi River continuum with CH<sub>4</sub>, CO<sub>2</sub> and N<sub>2</sub>O fluxes at 0.99 ± 0.35 mg C m<sup>-2 </sup>d<sup>-1</sup>, 4250.99 ± 477.74 mg C m<sup>-2 </sup>d<sup>-1 </sup>and 0.055 ± 0.026 mg N m<sup>-2 </sup>d<sup>-1</sup> respectively. The effect of higher residence time of water could be seen in the riverfront with increased CH<sub>4 </sub>and N<sub>2</sub>O fluxes at 3.27 ± 1.02 mg C m<sup>-2 </sup>d<sup>-1 </sup>and 0.129 ± 0.024 mg N m<sup>-2 </sup>d<sup>-1</sup>, respectively. However, the CO<sub>2</sub> flux did not show much increase. The fluxes increased significantly post city limits until its mouth in the Arabian Sea with extremely large flux for methane (CH<sub>4</sub>: 102.84 ± 41.32 mg C m<sup>-2 </sup>d<sup>-1</sup>, CO<sub>2</sub>: 9563.58 ± 1252.43 mg C m<sup>-2 </sup>d<sup>-1</sup>, and N<sub>2</sub>O: 0.16 ± 0.11 mg N m<sup>-2 </sup>d<sup>-1</sup>, respectively). Overall, it appeared that even within the anthropogenically stressed river, the nature of flow regime, exerts significant control on cycling of elements leading to differential fluxes. Also, the level of coupling between nitrogen and carbon appeared to change within the course of the river.</p>


1980 ◽  
Vol 4 (2) ◽  
pp. 84-88 ◽  
Author(s):  
C. W. Ralston ◽  
D. D. Richter

Abstract Analysis of forest survey plot data for 16 coastal counties in North Carolina indicated substantial areas of very low productivity for pine growth were associated with two site types, savannas and pocosins, that are easily identified by aerial photo interpretation. Results indicate that the ready identifiability of such areas provides a rapid method for screening areas for soil test sampling and for making large-scale economic appraisals of sites where fertilizer investments might be worthwhile.


Sign in / Sign up

Export Citation Format

Share Document