Development of the Korean National Geoid Model (KNGeoid18) and Applications for the Height Determination of Coastal Land Points

2021 ◽  
Vol 114 (sp1) ◽  
Author(s):  
Jisun Lee ◽  
Jay Hyoun Kwon ◽  
Yong Lee ◽  
Hungkyu Lee
2021 ◽  
Vol 906 (1) ◽  
pp. 012036
Author(s):  
Persephone Galani ◽  
Sotiris Lycourghiotis ◽  
Foteini Kariotou

Abstract Deriving a local geoid model has drawn much research interest in the last decade, in an endeavour to minimize the errors in orthometric heights calculations, inherited by the use of global geoid reference models. In most parts of the earth, the local geoid surface may be tens of meters away from the Global Reference biaxial Ellipsoid (WGS84), which create numerus problems in topographic, environmental and navigational applications. Several methods have been developed for optimizing the precision of the calculation of the geoid heights undulations and the accuracy of the corresponding orthometric heights calculations. The optimization refers either to the method used for data acquisition, or to the geometrical method used for the determination of the best fit local geoid model. In the present work, we focus on the reference ellipsoid used for the geometric and geoid heights determination and develop a method to provide the one that fits best to the local geoid surface. Moreover, we consider relatively small sea regions and near to coast areas, where the usual methods for data acquisition fail more or less, and we pay attention in two directions: To obtain accurate measured data and to have the best possible reference ellipsoid for the area at hand. In this due, we use the “GNSS-on-boat” methodology to obtain direct sea level data, which we induce in a Moore Penrose pseudoinverse procedure to calculate the best fit triaxial ellipsoid. This locally optimized reference ellipsoid minimizes the geometric heights in the region at hand. The method is applied in two closed sea areas in Greece, namely Corinthian and Patra’s gulf and also in four regions in the Ionian Sea, which exhibit significant geoid alterations. Taking into account all factors of uncertainty, the precision of the mean sea level surface, produced by the “GNSS on boat” methodology, had been estimated at 5.43 cm for the gulf of Patras, at 3.76 cm for the Corinthian gulf and at 3.31 for the Ionian and Adriatic Sea areas. The average difference of this surface and the local triaxial reference ellipsoid, calculated in this work, is found to be less than 15 cm, whereas the corresponding difference with respect to WGS84 is of the order of 30m.


Author(s):  
M. O. Ehigiator ◽  
S. O. Oladosu

With the use of Global Navigation Satellite System (GNSS) technology, it is now possible to determine the position of points in 3D coordinates systems. Lagos datum is the most common Mean Sea Level used in most parts of Nigeria. In Niger Delta, for instance Warri and its environs, the most commonly used datum for height determination is the Mean Lower Low Water Datum. It then becomes necessary to determine a constant factor for conversion between the two datum when the need arises as both are often encountered during Geomatics Engineering field operations. In this paper, the constant to be applied in converting between both datum was determined. The constant was found to be 17.79m. The horizontal and vertical accuracy standard was also determined as well as the stack maps.


2013 ◽  
Vol 87 (4) ◽  
Author(s):  
G. Mercurio ◽  
O. Bauer ◽  
M. Willenbockel ◽  
N. Fairley ◽  
W. Reckien ◽  
...  

2012 ◽  
Vol 2 (4) ◽  
pp. 302-318 ◽  
Author(s):  
P.L. Woodworth ◽  
C.W. Hughes ◽  
R.J. Bingham ◽  
T. Gruber

AbstractWe describe the application of ocean levelling to worldwide height system unification. The study involves a comparison of ‘geodetic’ and ‘ocean’ approaches to determination of the mean dynamic topography (MDT) at the coast, from which confidence in the accuracy of stateof- the-art ocean and geoid models can be obtained. We conclude that models are consistent at the sub-decimetre level for the regions that we have studied (North Atlantic coastlines and islands, North American Pacific coast and Mediterranean). That level of consistency provides an estimate of the accuracy of using the ocean models to provide an MDT correction to the national datums of countries with coastlines, and thereby of achieving unification. It also provides a validation of geoid model accuracy for application to height system unification in general. We show how our methods can be applied worldwide, as long as the necessary data sets are available, and explain why such an extension of the present study is necessary if worldwide height system unification is to be realised.


2021 ◽  
Vol 32 (5.2) ◽  
Author(s):  
Puttipol Dumrongchai ◽  
Chawis Srimanee ◽  
Nuttanon Duangdee ◽  
Jittrakorn Bairaksa
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document