scholarly journals Smartphone-Based Automated Non-Destructive Testing Devices

2020 ◽  
Vol 11 (4) ◽  
pp. 272-278
Author(s):  
V. F. Petryk ◽  
A. G. Protasov ◽  
R. M. Galagan ◽  
A. V. Muraviov ◽  
I. I. Lysenko

Currently, non-destructive testing is an interdisciplinary field of science and technology that serves to ensure the safe functioning of complex technical systems in the face of multifactorial risks. In this regard, there is a need to consider new information technologies based on intellectual perception, recognition technology, and general network integration. The purpose of this work was to develop an ultrasonic flaw detector, which uses a smartphone to process the test results, as well as transfer them directly to an powerful information processing center, or to a cloud storage to share operational information with specialists from anywhere in the world.The proposed flaw detector consists of a sensor unit and a smartphone. The exchange of information between the sensor and the smartphone takes place using wireless networks that use "bluetooth" technology. To ensure the operation of the smartphone in the ultrasonic flaw detector mode, the smartphone has software installed that runs in the Android operating system and implements the proposed algorithm of the device, and can serve as a repeater for processing data over a considerable distance (up to hundreds and thousands of kilometers) if it necessary.The experimental data comparative analysis of the developed device with the Einstein-II flaw detector from Modsonic (India) and the TS-2028H+ flaw detector from Tru-Test (New Zealand) showed that the proposed device is not inferior to them in terms of such characteristics as the range of measured thicknesses, the relative error in determining the depth defect and the object thickness. When measuring small thicknesses from 5 to 10 mm, the proposed device even surpasses them, providing a relative measurement error of the order of 1 %, while analogues give this error within 2–3 %.

2017 ◽  
Vol 267 ◽  
pp. 248-252
Author(s):  
Alexey Tatarinov ◽  
Viktor Mironov ◽  
Dmitry Rybak ◽  
Pavels Stankevich

Possibilities of non-destructive testing (NDT) methods to assess the quality of permanent joints of powder metal parts were evaluated. Antifriction bushing-bushing couples used in transport braking systems were investigated. The parts made of bronze graphite were crimped by pulsed magnetic deformation by means of electromagnetic equipment with a maximum discharge energy of 30 kJ. The gap between joint parts in the couples was assessed by ultrasonic and radiographic methods. A standard ultrasonic flaw detector Krautkramer USM-25 with an Olympus 4MHz dual-element echo transducer and an industrial x-ray apparatus YXLON EVO 200D were used, correspondingly. In first trial, both methods were equally sensitive to tight and weak connection of joints.


2021 ◽  
Vol 2021 (4) ◽  
pp. 70-82
Author(s):  
V.S. Eremenko ◽  
◽  
V.P. Babak ◽  
A.O. Zaporozhets ◽  
◽  
...  

The article describes the approach to the formation of a simulation model of information signals, which are typical for objects with different types of defects. The dispersive analysis of the signal spectrum components in the bases of the discrete Hartley transform and the discrete cosine transform is carried out. The analysis of the form of the reconstructed information signal is carried out depending on the number of coefficients of the spectral alignment in Hartley bases and cosine functions. The basis of orthogonal functions of a discrete argument is obtained, which can be used for the spectral transformation of information signals of a flaw detector. A method of simulation of information signals has been developed and experimentally investigated, which allows taking into account the deterministic and random components of the characteristics of real information signals. References 24, figures 13, tables 3.


2021 ◽  
Vol 3 (134) ◽  
pp. 135-148
Author(s):  
Svitlana Klymenko ◽  
Pavlo Kiselyov ◽  
Oleksii Kulyk

The development of modern rocket and space technology (RST) is characterized by constant improvement: increasing speed, range and altitude. Improving these characteristics, through modernization, has led to a significant complication of the design of RST and its equipment. Among the most promising materials for the manufacture of RST structures are more often used polymer composite materials (PCM), which are increasingly used in modern RST engineering, especially in cases where no other material meets the new requirements. Quality control of RST products depends on determining the condition of materials in these facilities, both in production and in operating conditions, which must be carried out both in the production process (with the deviation of production processes may form different types of structure heterogeneity: porosity, foreign inclusions, stratification and cracks) and during operation. In polymer composite materials RST, namely to detect defects such as delamination and cracks using ultrasonic non-destructive testing. An analysis of the use of traditional ultrasonic non-destructive testing using a portable ultrasonic flaw detector using high-frequency transducers. It has been determined that it is sufficient to use portable ultrasonic flaw detectors to detect longitudinal cracks or stratifications, but for more reliable detection and detection of defects, completeness of control should use automated ultrasonic control systems that have greater sensitivity and scanning speed. defective zones with the possibility of constructing a qualitative image of the defective zone for further assessment of the performance of the entire structure with PCM.


2011 ◽  
Vol 130-134 ◽  
pp. 2421-2424
Author(s):  
Guo Qiang Cao ◽  
Lan Yao ◽  
Yi Tong Dai

Ultrasonic flaw detection in weld inspection is commonly used in non-destructive testing methods. But when the ultrasonic inspection of the welds, point location of defects and identify need technical personnel calculation and according to their long-term practical experience, it requirement for inspection personnel has higher technology.And in ultrasonic weld inspection there will be some factors affecting the accuracy of positioning. It will lead to limitations of ultrasonic weld inspection. To solve these problems effectively, AutoCAD will be used in ultrasonic weld inspection.


2013 ◽  
Vol 64 (2) ◽  
pp. 21001 ◽  
Author(s):  
Jean-Luc Bodnar ◽  
Jean-Jacques Metayer ◽  
Kamel Mouhoubi ◽  
Vincent Detalle

2020 ◽  
pp. 54-59
Author(s):  
A. A. Yelizarov ◽  
A. A. Skuridin ◽  
E. A. Zakirova

A computer model and the results of a numerical experiment for a sensitive element on a planar mushroom-shaped metamaterial with cells of the “Maltese cross” type are presented. The proposed electrodynamic structure is shown to be applicable for nondestructive testing of geometric and electrophysical parameters of technological media, as well as searching for inhomogeneities in them. Resonant frequency shift and change of the attenuation coefficient value of the structure serve as informative parameters.


Sign in / Sign up

Export Citation Format

Share Document