Mode d'empilement et distorsion de sequences genetiques en milieu marin restreint; facies et architecture des depots hettangiens du sud-ouest du bassin de Paris

2000 ◽  
Vol 171 (3) ◽  
pp. 341-353 ◽  
Author(s):  
Gilles Merzeraud ◽  
Raymond Rauscher ◽  
Michel Hoffert ◽  
Francois Verdier

Abstract In the southwestern part of the Paris Basin (Sologne region), dolomite and limestone deposits of Hettangian age represent an excellent cover for a thick sandstone reservoir, which is being worked by "Gaz de France" for natural gas storage in underground aquifers. The "genetic sequences" of these shallow marine deposits and their stacking patterns are associated with two orders of relative sea-level fluctuations. The thinnest genetic sequences are arranged in transgressive/regressive hemicycles that include distinct facies assemblages. The facies changes are related to rapid palaeogeographic variations that occur during the onset of each genetic sequence. On a different scale, the stacked genetic sequences are organized into three geometric patterns, which are related to long-term eustatic fluctuations (eg. aggradational, retrogradational, and progradational patterns). For each of these stacked geometries, the partitioning of sediment volumes, the degree of symmetry, and the two-dimensional architecture of the genetic sequences had been modified through time. These changes are related to the effects of two superimposed short-term and long-term sea-level oscillations that distort the stratigraphic record.

2019 ◽  
Vol 498 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Michael Wagreich ◽  
Benjamin Sames ◽  
Malcolm Hart ◽  
Ismail O. Yilmaz

AbstractThe International Geoscience Programme Project IGCP 609 addressed correlation, causes and consequences of short-term sea-level fluctuations during the Cretaceous. Processes causing several ka to several Ma (third- to fourth-order) sea-level oscillations during the Cretaceous are so far poorly understood. IGCP 609 proved the existence of sea-level cycles during potential ice sheet-free greenhouse to hothouse climate phases. These sea-level fluctuations were most probably controlled by aquifer-eustasy that is altering land-water storage owing to groundwater aquifer charge and discharge. The project investigated Cretaceous sea-level cycles in detail in order to differentiate and quantify both short- and long-term records based on orbital cyclicity. High-resolution sea-level records were correlated to the geological timescale resulting in a hierarchy of sea-level cycles in the longer Milankovitch band, especially in the 100 ka, 405 ka, 1.2 Ma and 2.4 Ma range. The relation of sea-level highs and lows to palaeoclimate events, palaeoenvironments and biota was also investigated using multiproxy studies. For a hothouse Earth such as the mid-Cretaceous, humid–arid climate cycles controlling groundwater-related sea-level change were evidenced by stable isotope data, correlation to continental lake-level records and humid–arid weathering cycles.


2021 ◽  
Author(s):  
Nurul Syazwin Zamri ◽  
Ying Jia Teoh ◽  
Khalf Khiri AbuBakr ◽  
Meor Hakif Amir Hassan ◽  
Nur Azwin Ismail ◽  
...  

Abstract The purpose of this paper is to present information on the past sea-level fluctuations of sedimentary rock succession of the Perlis area that covers the Mempelam Limestone, Timah Tasoh Formation, Sanai Limestone, Telaga Jatoh Formation, Kubang Pasu Formation, and Chuping Formation at Bukit Tungku Lembu and Guar Sanai, Perlis, Malaysia. Based on sedimentology logging, cycle stacking patterns, and accommodation variations revealed by Fischer plots, 51 cyclic sequences of third-order depositional sequences are recognized. These sequences generally consist of transgressive and regressive events. As the thickness of the cycle column increases, it forms an increase in accommodation space and subsidence rate and results in rising sea level. As the thickness of the cycle column decreases, it will form a decrease in accommodation space and subsidence rate and resulting in sea-level fall. Generally, the facies of the cycle are vertically arranged, forming coarsening and fining upward patterns observed from sedimentology logging. The Silurian Mempelam Limestone-Carboniferous Chepor Member sequence is characterized by a progressive increase and decrease in accommodation space, indicating a rise and fall in sea level. In contrast, the Carboniferous Uppermost Kubang Pasu-Permian Chuping Limestone sequence is characterized by a progressive decrease in accommodation space, indicating a longer-term fall in sea level. The regressive-transgressive cycles recognize deviations in the accommodation space and sediment supply from the cyclic successions. In turn, these cycles are expressing the long-term of Perlis’s sea-level fluctuations. The results notably reflect the cycles consistent with the long-term rising and falling trend on different regions globally in Paleozoic times.


2007 ◽  
Vol 67 (1) ◽  
pp. 83-99 ◽  
Author(s):  
Peter R. Parham ◽  
Stanley R. Riggs ◽  
Stephen J. Culver ◽  
David J. Mallinson ◽  
John F. Wehmiller

AbstractA detailed record of late Quaternary sea-level oscillations is preserved within the upper 45 m of deposits along an eight km transect across Croatan Sound, a drowned tributary of the Roanoke/Albemarle drainage system, northeastern North Carolina. Drill-hole and seismic data reveal nine relatively complete sequences filling an antecedent valley comprised of discontinuous middle and early Pleistocene deposits. On interfluves, lithologically similar marine deposits of different sequences occur stacked in vertical succession and separated by ravinement surfaces. Within the paleo-drainage, marine deposits are separated by fluvial and/or estuarine sediments deposited during periods of lowered sea level. Foraminiferal and molluscan fossil assemblages indicate that marine facies were deposited in a shallow-marine embayment with open connection to shelf waters. Each sequence modifies or truncates portions of the preceding sequence or sequences. Sequence boundaries are the product of a combination of fluvial, estuarine, and marine erosional processes. Stratigraphic and age analyses constrain the ages of sequences to late Marine Isotope Stage (MIS) 6 and younger (∼ 140 ka to present), indicating multiple sea-level oscillations during this interval. Elevations of highstand deposits associated with late MIS 5 and MIS 3 imply that sea level was either similar to present during those times, or that the region may have been influenced by glacio-isostatic uplift and subsidence.


2001 ◽  
Vol 38 (2) ◽  
pp. 293-308 ◽  
Author(s):  
Andreas Prokoph ◽  
Anthony D Fowler ◽  
R Timothy Patterson

Wavelet transform and other signal analysis techniques suggest that the planktic foraminiferal (PF) long-term evolutionary record of the last 127 Ma can be attributed to complex periodic and nonlinear patterns. Correlation of the PF extinction pattern with other geological series favors an origin of the ~30 Ma periodicity and self-organization by quasi-periodic mantle-plume cycles that in turn drive episodic volcanism, CO2-degassing, oceanic anoxic conditions, and sea-level fluctuations. Stationary ~30 Ma periodicity and a weak secular trend of ~100 Ma period are evident in the PF record, even without consideration of the mass extinction at the K–T boundary. The 27–32 Ma periodicity in the impact crater record and lows in the global sea-level curve, respectively, are ~6.5 Ma and ~2.3 Ma out of phase with PF-extinction data, although major PF-extinction events correspond to the bolide impacts at the K–T boundary and in late Eocene. Another six extinction events correspond to abrupt global sea-level falls between the late Albian and early Oligocene. Self-organization in the PF record is characterized by increased radiation rates after major extinction events and a steady number of baseline species. Our computer model of long-term PF evolution replicates this SO pattern. The model consists of output from the logistic map, which is forced at 30 Ma and 100 Ma frequencies. The model has significant correlations with the relative PF-extinction data. In particular, it replicates singularities, such as the K–T event, nonstationary 2.5–10 Ma periodicities, and phase shifts in the ~30 Ma periodicity of the PF record.


2021 ◽  
Author(s):  
Chloé M. Marcilly ◽  
Trond H. Torsvik ◽  
Mathew Domeier ◽  
Dana L. Royer

<p>CO<sub>2</sub> is the most important greenhouse gas in the Earth’s atmosphere and has fluctuated considerably over geological time. However, proxies for past CO<sub>2 </sub>concentrations have large uncertainties and are mostly limited to Devonian and younger times. Consequently, CO<sub>2</sub> modelling plays a key role in reconstructing past climate fluctuations. Facing the limitations with the current CO<sub>2</sub> models, we aim to refine two important forcings for CO<sub>2</sub> levels over the Phanerozoic, namely carbon degassing and silicate weathering.</p><p>Silicate weathering and carbonate deposition is widely recognized as a primary sink of carbon on geological timescales and is largely influenced by changes in climate, which in turn is linked to changes in paleogeography. The role of paleogeography on silicate weathering fluxes has been the focus of several studies in recent years. Their aims were mostly to constrain climatic parameters such as temperature and precipitation affecting weathering rates through time. However, constraining the availability of exposed land is crucial in assessing the theoretical amount of weathering on geological time scales. Associated with changes in climatic zones, the fluctuation of sea-level is critical for defining the amount of land exposed to weathering. The current reconstructions used in<sub></sub>models tend to overestimate the amount of exposed land to weathering at periods with high sea levels. Through the construction of continental flooding maps, we constrain the effective land area undergoing silicate weathering for the past 520 million years. Our maps not only reflect sea-level fluctuations but also contain climate-sensitive indicators such as coal (since the Early Devonian) and evaporites to evaluate climate gradients and potential weatherablity through time. This is particularly important after the Pangea supercontinent formed but also for some time after its break-up.</p><p>Whilst silicate weathering is an important CO<sub>2</sub> sink, volcanic carbon degassing is a major source but one of the least constrained climate forcing parameters. There is no clear consensus on the history of degassing through geological time as there are no direct proxies for reconstructing carbon degassing, but various proxy methods have been postulated. We propose new estimates of plate tectonic degassing for the Phanerozoic using both subduction flux from full-plate models and zircon age distribution from arcs (arc-activity) as proxies.</p><p>The effect of revised modelling parameters for weathering and degassing was tested in the well-known long-term models GEOCARBSULF and COPSE. They revealed the high influence of degassing on CO<sub>2</sub> levels using those models, highlighting the need for enhanced research in this direction. The use of arc-activity as a proxy for carbon degassing leads to interesting responses in the Mesozoic and brings model estimates closer to CO<sub>2 </sub> proxy values. However, from simulations using simultaneously the revised input parameters (i.e weathering and degassing) large model-proxy discrepancies remain and notably for the Triassic and Jurassic.</p><p> </p>


2020 ◽  
Author(s):  
Stéphane Bodin ◽  
Jan Danisch ◽  
Malte Mau ◽  
Francois-Nicolas Krencker ◽  
Alexis Nutz ◽  
...  

<p><span>Mesozoic sea-level fluctuations have been a matter of debate for several decades, especially the extend and origin of sea-level cycles that have a periodicity of about 1 Myr or less. The debate lies in the main driving mechanism for sequence development (global sea-level or sediment flux variations) as well as the reason behind water exchanges between the continents and the oceans (glacio- or aquifer-eustatism). In this study, we focus on the carbonate-dominated sedimentary record of the Bajocian (Middle Jurassic) in the Central High Atlas Basin of Morocco. Several aspects make this basin an appropriate location for discussing Middle Jurassic sea-level changes. Firstly, the outstanding exposures of the High Atlas Mountains, with continuous exposures for 10s of kilometres, allow to describe and track sedimentary packages and their bounding surfaces from proximal to distal settings. Moreover, a combination of ammonite and brachiopod biostratigraphy with carbon-isotopes chemostratigraphy allows to temporarily constrain their development, which permits to correlate and compare the Central High Atlas sedimentary record to other basins. Finally, due to high-subsidence rates, thick Bajocian sedimentary sequences have accumulated, minimizing condensation and hiatus that might prevail in other basins due to a lack of accommodation space creation. Two Bajocian long-term transgressive-regressive (T-R) packages are observed throughout the basin. They are modulated by several medium-term T-R packages, that have each an approximate duration of 1 Myr. These sequences can also be correlated on a basinwide scale. Combined with sedimentological and facies analyses, architectural evidence along proximal-to-distal transect illustrates that several of the medium-term sequences are characterized by the presence of a falling stage and lowstand systems tracts, demonstrating that medium-term T-R stacking patterns are not solely linked to fluctuation in sediment supply, but also to episodes of relative sea-level fall of at least 30m of amplitude. This is confirmed by backstripping analysis performed in a composite section from the center of the Basin. Comparison with Bajocian deposits from France and Scotland, where good biostratigraphic dating is also available, shows that similar contemporaneous sea-level fall can be observed, highlighting their potential global character. The two long-term Bajocian sequences are more difficult to correlate on a global scale, suggesting that they are rather primarily linked to fluctuation in regional sediment supply or dynamic topography processes. The exact cause of the Bajocian medium-term sea-level falls is currently unknown, but it is here interesting to note that a relatively cool globate climate has been postulated for the Middle Jurassic, suggesting that glacio-eustasy was their most likely driver.</span></p>


The Holocene ◽  
2018 ◽  
Vol 28 (10) ◽  
pp. 1588-1597 ◽  
Author(s):  
Stefano Furlani ◽  
Fabrizio Antonioli ◽  
Timmy Gambin ◽  
Sara Biolchi ◽  
Saviour Formosa ◽  
...  

Submerged caves represent potential archives of speleothems with continental and marine biogenic layers. In turn, these can be used to reconstruct relative sea-level changes. This study presents new data on the tectonic behaviour of the island of Malta during the Holocene. These data were obtained from a speleothem sampled, during an underwater survey, at a depth of −14.5 m, inside a recently discovered submerged cave. Since the cave was mainly formed in a subaerial karst environment, the presence of a speleothem with serpulids growing on its continental layers permitted the reconstruction of the chronology for drowning of the cave. The radiocarbon dates obtained from the penultimate and last continental layers of the speleothem, before a serpulid encrustation, were compared with synthetic aperture radar (SAR) and global positioning system (GPS) data, together with published sedimentological and archaeological data. The radiocarbon analyses provided an average age of 7.6 ka BP that perfectly aligns with the Lambeck’s model of Holocene sea level. Morevoer, long-term data agree with published archeological and sedimentological data as well as with SAR interpherometric and GPS trends on a decadal scale. We conclude that the Maltese islands were tectonically stable during the Holocene, and this tectonic behaviour still persists nowadays. On the contrary, new informations on older deposits, such as MIS5e (Maritime Isotope Stage, corresponding to 125 ka ago) were not found in the study area, confirming the lack of older Quaternary marine deposits in these islands.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1099
Author(s):  
Ahmed Mansour ◽  
Thomas Gentzis ◽  
Michael Wagreich ◽  
Sameh S. Tahoun ◽  
Ashraf M.T. Elewa

Widespread deposition of pelagic-hemipelagic sediments provide an archive for the Late Cretaceous greenhouse that triggered sea level oscillations. Global distribution of dinoflagellate cysts (dinocysts) exhibited a comparable pattern to the eustatic sea level, and thus, considered reliable indicators for sea level and sequence stratigraphic reconstructions. Highly diverse assemblage of marine palynomorphs along with elemental proxies that relate to carbonates and siliciclastics and bulk carbonate δ13C and δ18O from the Upper Cretaceous Abu Roash A Member were used to reconstruct short-term sea level oscillations in the Abu Gharadig Basin, southern Tethys. Additionally, we investigated the relationship between various palynological, elemental, and isotope geochemistry parameters and their response to sea level changes and examined the link between these sea level changes and Late Cretaceous climate. This multiproxy approach revealed that a long-term sea-level rise, interrupted by minor short-term fall, was prevalent during the Coniacian-earliest Campanian in the southern Tethys, which allowed to divide the studied succession into four complete and two incomplete 3rd order transgressive-regressive sequences. Carbon and oxygen isotopes of bulk hemipelagic carbonates were calibrated with gonyaulacoids and freshwater algae (FWA)-pteridophyte spores and results showed that positive δ13Ccarb trends were consistent, in part, with excess gonyaulacoid dinocysts and reduced FWA-spores, reinforcing a rising sea level and vice versa. A reverse pattern was shown between the δ18Ocarb and gonyaulacoid dinocysts, where negative δ18Ocarb trends were slightly consistent with enhanced gonyaulacoid content, indicating a rising sea level and vice versa. However, stable isotope trends were not in agreement with palynological calibrations at some intervals. Therefore, the isotope records can be used as reliable indicators for reconstructing changes in long-term sea level rather than short-term oscillations.


Author(s):  
V. A. Merkulov ◽  
I. M. Ashik ◽  
L. А. Timokhov

New estimates of linear trends in the position of the level surface were obtained as a result of analysis of the data of long-term observations of sea level fluctuations at the stations of the seas of the Arctic Ocean. A rise in sea level is observed at almost all stations. In multi-year fluctuations of the level, periods characterized by different values of linear trends are identified. The reasons for the variability of local linear trends in the level of the Arctic seas from the 1950-1980 stage to the 1990-2015 period are analyzed. It is shown that the presence of local trends during the annual average levels at coast stations is a consequence of changes in climatic conditions reflected in changes in atmospheric and hydrosphere climatic indices, as well as in freshwater river runoff.


Sign in / Sign up

Export Citation Format

Share Document