Structural characterization of the wedge - top Epiligurian Units in the framework of the Northern Apennines tectonic evolution (northern Italy)

Author(s):  
Francesca Stendardi ◽  
Gianluca Vignaroli ◽  
Giulio Viola

<p>The Northern Apennines are an accretionary wedge formed in response to the Late Cretaceous-Eocene closure of the Ligurian-Piedmont ocean and the subsequent Oligocene-Miocene convergence and collision between Africa and Europe. The wedge is formed by a stack of different paleogeographic units which, from the innermost to the outermost and from top to bottom, are: (i) the Ligurian Domain (formed by Jurassic ophiolites and their Cretaceous-to-Paleocene sedimentary cover); (ii) the Sub-Ligurian Domain (Paleocene-to-lower Miocene deep marine sediments and turbidites); (iii) the Tuscan-Umbria-Marche Domain (mostly including Jurassic-to-Oligocene platform and basinal carbonate successions, overlain by Miocene-Pliocene turbidites). The wedge is shaped by WNW-ESE-striking and SW-dipping thrusts, accommodating a general northeastward tectonic transport. Atop of the deformed Ligurian Domain there occur the Epiligurian Units, which consist of middle Eocene-upper Miocene bathyal to shallow-water siliciclastic deposits infilling wedge-top basins. These Units presently fill in separate basins with poor lateral interconnectivity due to erosion and deformation. Since the Miocene, thrusting toward the (eastern) orogenic foreland occurred simultaneously with extension in the (western) hinterland domain, causing the formation of NW-SE-striking normal faults. Presently, focal mechanisms of the stronger earthquakes constrain dominant thrusting associated with NE-SW regional shortening, whereas the extensional regime controls the seismicity along the axial portion of the wedge. This recently launched study aims to better characterize the deformation structures affecting the Epiligurian Units in the internal and external sectors of the Northern Apennines (Emilia-Romagna Region) with the goal to provide a comprehensive syn-to-post accretion evolutionary scenario for these shallow basins. In particular, deformation structures affecting these wedge-top sequences of the inner (southwestern) side of the wedge are being studied by their systematic geometric and kinematic multiscalar and multitechnique characterization. Top-to-the NE, WNW-ESE-striking thrusts/reverse faults, dipping moderately to SSW are defined by planar slip surfaces associated with thin clastic damage zones. Top-to-the SE, ENE-WSW-striking thrusts/reverse faults, are instead generally devoid of well-developed damage zones. These contractional faults are systematically cut by NW-SE and NE-SW-striking normal and oblique faults systems, characterized by mutually intersecting fault planes accommodating centimetric to decimetric throws. Associated with the extensional structures occur widespread cataclastic and disaggregation deformation bands. They are found as either single bands or clusters, cutting across upper Eocene coarse-grained sandstones. Our preliminary results show that the Epiligurian Units experienced a complex tectonic evolution, including NNE-SSW shortening followed by NE-SW extension. The structural record of these wedge top basins is useful to infer the kinematics and rate of wedge build up and tearing down during the progressive evolution of the continental collision. The Epiligurian Units can thus be considered as useful gages of the deformation history of the Northern Apennines wedge, with noteworthy implications on its current seismotectonic setting.</p>

GeoArabia ◽  
2003 ◽  
Vol 8 (1) ◽  
pp. 91-124 ◽  
Author(s):  
Adel R Moustafa ◽  
Ati Saoudi ◽  
Alaa Moubasher ◽  
Ibrahim M Ibrahim ◽  
Hesham Molokhia ◽  
...  

ABSTRACT An integrated surface mapping and subsurface study of the Bahariya Depression aided the regional subsurface interpretation. It indicated that four major ENE-oriented structural belts overlie deep-seated faults in this part of the ‘tectonically stable’ area of Egypt. The rocks of the Bahariya area were deformed in the Late Cretaceous, post-Middle Eocene, and Middle Miocene-and subsurface data indicated an early Mesozoic phase of normal faulting. The Late Cretaceous and post-Middle Eocene deformations reactivated the early normal faults by oblique slip and formed a large swell in the Bahariya region. The crest was continuously eroded whereas its peripheries were onlapped by Maastrichtian and Tertiary sediments. The tectonic evolution of the Bahariya region shows great similarity to the deformation of the ‘tectonically unstable’ area of the northern Western Desert where several hydrocarbon fields have been discovered. This similarity may indicate that the same phases of deformation could extend to other basins lying in the ‘tectonically stable’ area, such as the Asyut, Dakhla, Nuqura, and El Misaha basins.


Solid Earth ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 425-446 ◽  
Author(s):  
Ralph Hinsch ◽  
Chloé Asmar ◽  
Muhammad Nasim ◽  
Muhammad Asif Abbas ◽  
Shaista Sultan

Abstract. The Kirthar Fold Belt is part of the transpressive transfer zone in Pakistan linking the Makran accretionary wedge with the Himalaya orogeny. The region is deforming very obliquely, nearly parallel to the regional S–N plate motion vector, indicating strong strain partitioning. In the central Kirthar Fold Belt, folds trend roughly N–S and their structural control is poorly understood. In this study, we use newly acquired 2-D seismic data with pre-stack depth migration, published focal mechanisms, surface and subsurface geological data, and structural modelling with restoration and balancing to constrain the structural architecture and kinematics of the Kirthar Fold Belt. The central Kirthar Fold Belt is controlled by Pliocene to recent linked thick-skinned to thin-skinned deformation. The thick-skinned faults are most likely partially inverting rift-related normal faults. Focal mechanisms indicate dip-slip faulting on roughly N–S-trending faults with some dip angles exceeding 40∘, which are considered too steep for newly initiated thrust faults. The hinterland of the study area is primarily dominated by strike-slip faulting. The inverting faults do not break straight through the thick sedimentary column of the post-rift and flexural foreland; rather, the inversion movements link with a series of detachment horizons in the sedimentary cover. Large-scale folding and layer-parallel shortening has been observed in the northern study area. In the southern study area progressive imbrication of the former footwall of the normal fault is inferred. Due to the presence of a thick incompetent upper unit (Eocene Ghazij shales) these imbricates develop as passive roof duplexes. In both sectors the youngest footwall shortcut links with a major detachment and the deformation propagates to the deformation front, forming a large fault-propagation fold. Shortening within the studied sections is calculated to be 18 %–20 %. The central Kirthar Fold Belt is a genuine example of a hybrid thick- and thin-skinned system in which the paleogeography controls the deformation. The locations and sizes of the former rift faults control the location and orientation of the major folds. The complex tectonostratigraphy (rift, post-rift, flexural foreland) and strong E–W gradients define the mechanical stratigraphy, which in turn controls the complex thin-skinned deformation.


Author(s):  
Ivan Martini ◽  
Elisa Ambrosetti ◽  
Andrea Brogi ◽  
Mauro Aldinucci ◽  
Frank Zwaan ◽  
...  

AbstractRift-basins are the shallow effects of lithosphere-scale extensional processes often producing polyphase faulting. Their sedimentary evolution depends on the mutual interplay between tectonics, climate, and eustasy. Estimating the role of each factor is generally a challenging issue. This paper is focused on the tectono-sedimentary evolution of the Neogene Siena-Radicofani Basin, a polyphase structural depression located in the inner Northern Apennines. Since Miocene, this basin developed after prolonged extensional tectonics, first as a bowl-shaped structural depression, later reorganized into a half-graben structure due to the activation of high-angle normal faults in the Zanclean. At that time the basin contained coeval continental and marine settings controlled by the normal faulting that caused the development of local coarse-grained depositional systems. These were investigated to: (i) discriminate between the influences of tectonics and climate on sedimentation patterns, and (ii) provide detailed time constraints on fault activity. The analysed successions were deposited in an interval between 5.08 and 4.52 Ma, when a climate-induced highstand phase occurred throughout the Mediterranean. However, evidence of local relative sea-level drops is registered in the sedimentary record, often associated with increased accommodation space and sediment supply. Such base-level fluctuations are not connected to climate changes, suggesting that the faults generally control sedimentation along the basin margins.


2018 ◽  
Author(s):  
Ralph Hinsch ◽  
Chloé Asmar ◽  
Muhammad Nasim ◽  
Muhammad Asif Abbas ◽  
Shaista Sultan

Abstract. The Kirthar Fold Belt is part of the lateral collision zone in Pakistan linking the Makran accretionary wedge with the Himalaya orogeny. The region is deforming very obliquely, nearly parallel to the regional S-N plate motion vector, indicating strong strain partitioning. In the central Kirthar Fold Belt, folds trend roughly N-S and their structural control is poorly understood. In this study, we use newly acquired 2D seismic data with pre-stack depth migration, published focal mechanisms, surface and subsurface geological data as well as structural modelling with restoration and balancing to constrain the structural architecture and kinematics of the Kirthar Fold Belt. The central Kirthar Fold Belt is controlled by Pliocene to recent inversion of Mesozoic rift related normal faults. Focal mechanisms indicate dip-slip faulting on roughly N-S trending faults with angles in the order of 45°, which are too steep for newly initiated thrust faults. The hinterland of the study area is primarily dominated by strike slip faulting. The inverting faults do not break straight through the thick sedimentary column of the post-rift and flexural foreland; rather the inversion movements link with a series of detachment horizons in the sedimentary cover, progressively imbricating the former footwall of the normal fault. Due to the presence of a thick incompetent upper unit (Eocene Ghazij shales) these imbricates develop as passive roof duplexes. Finally, the youngest footwall shortcut links with a major detachment and the deformation propagates to the deformation front, forming a large fault-propagation fold. Shortening within the studied sections is calculated to be on the order of 20 %. The central Kirthar fold belt is a genuine example of hybrid thick- and thin-skinned system in which the paleogeography controls the deformation. The locations and sizes of the former rift faults controls the location and orientation of the major folds. The complex tectonostratigraphy (rift, post rift, flexural foreland) alone with the strong E-W gradients defines the mechanical stratigraphy, which in turn controls the complex thin-skinned deformation.


Tectonics ◽  
2011 ◽  
Vol 30 (6) ◽  
pp. n/a-n/a ◽  
Author(s):  
F. Mirabella ◽  
F. Brozzetti ◽  
A. Lupattelli ◽  
M. R. Barchi

GeoArabia ◽  
2013 ◽  
Vol 18 (2) ◽  
pp. 99-136
Author(s):  
Simon Virgo ◽  
Max Arndt ◽  
Zoé Sobisch ◽  
Janos L. Urai

ABSTRACT We present a high-resolution structural study on the dip slope of the southern flank of Jabal Shams in the central Oman Mountains. The objectives of the study were: (1) to test existing satellite-based interpretations of structural elements in the area; (2) prepare an accurate geological map; and (3) collect an extensive structural dataset of fault and bedding planes, fault throws, veins and joints. These data are compared with existing models of tectonic evolution in the Oman Mountains and the subsurface, and used to assess the applicability of these structures as analogs for fault and fracture systems in subsurface carbonate reservoirs in Oman. The complete exposure of clean rock incised by deep wadis allowed detailed mapping of the complex fault, vein and joint system hosted by Member 3 of the Cretaceous Kahmah Group. The member was divided into eight units for mapping purposes, in about 100 m of vertical stratigraphy. The map was almost exclusively based on direct field observations. It includes measurement of fault throw in many locations and the construction of profiles, which are accurate to within a few meters. Ground-truthing of existing satellite-based interpretations of structural elements showed that faults can be mapped with high confidence using remote-sensing data. The faults range into the subseismic scale with throws as little as a few decimeters. However, the existing interpretation of lineaments as cemented fractures was shown to be incorrect: the majority of these are open fractures formed along reactivated veins. The most prominent structure in the study area is a conjugate set of ESE-striking faults with throws resolvable from several centimeters to hundreds of meters. These faults contain bundles of coarse-grained calcite veins, which may be brecciated during reactivation. We interpret these faults to be a conjugate normal- to oblique fault set, which was rotated together with bedding during the folding of the Al Jabal al-Akhdar anticline. There are many generations of calcite veins with minor offset and at high-angle-to-bedding, sometimes in en-echelon sets. Analysis of clear overprinting relationships between veins at high-angle-to-bedding is consistent with the interpretations of Holland et al. (2009a); however we interpret the anticlockwise rotation of vein strike orientation to start before and end after the normal faulting. The normal faults post-date the bedding-parallel shear veins in the study area. Thus these faults formed after the emplacement of the Semail and Hawasina Nappes. They were previously interpreted to be of the same age as the regional normal- to oblique-slip faults in the subsurface of northern Oman and the United Arab Emirates, which evolved during the early deposition of the Campanian Fiqa Formation as proposed by Filbrandt et al. (2006). We interpret them also to be coeval with the Phase I extension of Fournier et al. (2006). The reactivation of these faults and the evolution of new veins was followed by folding of the Al Jabal al-Akhdar anticline and final uplift and jointing by reactivation of pre-existing microveins. Thus the faults in the study area are of comparable kinematics and age as those in the subsurface. However they formed at much greater depth and fluid pressures, so that direct use of these structures as analogs for fault and fracture systems in subsurface reservoirs in Oman should be undertaken with care.


Sign in / Sign up

Export Citation Format

Share Document