The determination of opaque ore minerals by X-ray diffraction patterns

1924 ◽  
Vol 19 (1) ◽  
pp. 1-34 ◽  
Author(s):  
Paul F. Kerr
Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 129
Author(s):  
Liana Vella-Zarb ◽  
Ulrich Baisch

There is much interest and focus on solid forms of famciclovir. However, in spite of the abundance of reported differences in oral bioavailability, compressibility, and other physical–chemical properties of the various crystal forms of this drug, very little precise structural analysis is available in the literature to date. The form used in the commercial formulation is the anhydrous form I. Patents and patent applications report three different anhydrous crystalline forms on the basis of unindexed powder diffraction patterns. Single-crystal and variable-temperature X-ray diffraction experiments using the commercially available anhydrous form of famciclovir were carried out and led not only to the crystal structure determination of the anhydrous form I, but also to discovery of a new crystal form of anhydrous famciclovir from powder data.


1963 ◽  
Vol 71 (806) ◽  
pp. 63-68 ◽  
Author(s):  
Goro YAMAGUCHI ◽  
Yoshio ONO ◽  
Shigeo KAWAMURA ◽  
Yoshiaki SODA

Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 990
Author(s):  
Fatemeh Nikkhou ◽  
Fang Xia ◽  
Xizhi Yao ◽  
Idowu A. Adegoke ◽  
Qinfen Gu ◽  
...  

A flow-through reaction cell has been developed for studying minerals leaching by in-situ time-resolved powder X-ray diffraction, allowing for a better understanding of the leaching mechanisms and kinetics. The cell has the capability of independent control of temperature (up to 95 °C) and flow rate (>0.5 mL min−1) for atmospheric pressure leaching. It was successfully tested at the powder diffraction beamline at the Australian Synchrotron. Galena powder was leached in a citrate solution under flow-through condition at a flow rate of 0.5 mL min−1, while diffraction patterns were collected during the entire leaching process, showing rapid galena dissolution without the formation of secondary mineral phases. The flow-through cell can be used to study leaching processes of other ore minerals.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1136-C1136
Author(s):  
Kazuaki Aburaya ◽  
Chiaki Tsuboi ◽  
Fumiko Kimura ◽  
Kenji Matsumoto ◽  
Masataka Maeyama ◽  
...  

A three dimensionally magnetically oriented microcrystal array (3D-MOMA) is attractive to determination of a crystal structure as well as a molecular structure because it does not require a single crystal with sufficient size and quality for diffraction studies. We have developed a novel method to fabricate 3D-MOMA and determined several crystal structures using the 3D-MOMAs[1],[2]. However, the structure determination through MOMA requires a solidification treatment with UV curable monomer prior to X-ray diffraction experiment. We have developed a new X-ray diffractometer equipped with a magnetic field generator, which makes it possible to collect diffraction data without the solidification treatment. In this poster, we describe X-ray diffraction analyses of a magnetically oriented microcrystal suspension (MOMS) of L-alanine without the solidification treatment. A suspension of L-alanine microcrystals was poured in a glass capillary and rotated at a constant speed in a magnetic circuit attached in the X-ray diffractometer. Then, diffraction images were collected every 60 seconds. In the initial phase, the diffraction pattern showed a broad shape similar to that from a powder sample. As time goes on, diffraction patterns have gradually changed to single-crystal like patterns. After 2 hours, the shape of diffraction spots became as sharp as that of a single crystal. This observation shows that the microcrystals are oriented in the same direction. Owing to the improvement of the magnetic circuit and X-ray diffractometer, the quality of the diffraction has been greatly improved compared to that reported previously[3]. Further details of the analyses will be shown in the poster.


2005 ◽  
Vol 61 (1) ◽  
pp. 80-88 ◽  
Author(s):  
Cyril Platteau ◽  
Jacques Lefebvre ◽  
Stephanie Hemon ◽  
Carsten Baehtz ◽  
Florence Danede ◽  
...  

From pure powders of forms I and II of phenobarbital, X-ray diffraction patterns were recorded at room temperature. The starting crystal structural models were found by a Monte-Carlo simulated annealing method. The structures of the two forms were obtained through Rietveld refinements. Soft restraints were applied on bond lengths and bond angles, all H-atom positions were calculated. The cell of form I is monoclinic with the space group P21/n, Z = 12, Z′ = 3. Form II has a triclinic cell, with the space group P\bar 1, Z = 6, Z′ = 3. For both forms, the crystal cohesion is achieved by networks of N—H...O hydrogen bonds along [101]. The broadening of the Bragg peak profiles is interpreted in terms of isotropic strain effects and anisotropic size effects.


2008 ◽  
Vol 33 (6) ◽  
pp. 467-471 ◽  
Author(s):  
Huaxiong Chen ◽  
Shusen Chen ◽  
Lijie Li ◽  
Shaohua Jin

Sign in / Sign up

Export Citation Format

Share Document