Debris Flows in Small Mountain Stream Channels of Colorado and Their Hydrologic Implications

1981 ◽  
Vol xviii (3) ◽  
pp. 309-322 ◽  
Author(s):  
J. E. COSTA ◽  
R. D. JARRETT
Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 79 ◽  
Author(s):  
Stefano Segadelli ◽  
Federico Grazzini ◽  
Michele Adorni ◽  
Maria Teresa De Nardo ◽  
Anna Fornasiero ◽  
...  

In 2015 an intense rainfall event hit the Valleys of the Trebbia, Nure, and Aveto watercourses in the Northern Apennines. In about 6 h a mesoscale convective system deployed a stunning amount of precipitation of 340 mm, with an extreme hourly rainfall intensity of >100 mm/h. It triggered debris flows along slopes and stream channels, landslides and floods, which caused serious damages. Through the optimal combination of rainfall data and radar volumes, in this work we present a detailed rainfall analysis, which will serve as a basis to create a quantitative correlation with debris flows over elementary hydrological units. We aim at providing an objective basis for future predictions, starting from the recognition of the forcing meteorological events, and then arriving at the prediction of triggering phenomena and to the debris-flow type. We further provide seven observations/case studies on the effects of extreme-precipitation events on freshwater environments in small mountain catchments. Extreme-precipitation events are becoming more frequent and widespread globally but their ecological effects are still insufficiently understood. In general, the effects of extreme events on inland-waters’ ecosystems are highly context-dependent, ranging from deleterious to beneficial. We therefore highlight the necessity of further studies to characterize these effects in more depth to be able to include appropriate mitigation measures in environmental planning and stewardship.


CATENA ◽  
2020 ◽  
Vol 190 ◽  
pp. 104530
Author(s):  
Elżbieta Rojan ◽  
Maciej Dłużewski ◽  
Kazimierz Krzemień

2019 ◽  
Author(s):  
Emma J. Bee ◽  
Claire Dashwood ◽  
Catherine Pennington ◽  
Roxana L. Ciurean ◽  
Katy Lee

Abstract. Debris flows in Great Britain have caused damage to transport infrastructure, buildings, and disruption to businesses and communities. This study describes a GIS-based heuristic model developed by the British Geological Survey (BGS) to produce a national scale spatial assessment of debris flow susceptibility for Great Britain. The model provides information on the potential for debris flow occurrence using properties and characteristics of geological materials (permeability, material availability and characteristics when weathered), slope angle and proximity to stream channels as indicators of susceptibility. Building on existing knowledge, the model takes into account the presence or absence of glacial scouring. As determined by the team of geologists and geomorphologists, the model ranks the availability of debris material and slope as the two dominant factors important for potential debris flow initiation, however it also considers other factors such as geological controls on infiltration. The resultant model shows that over 90 % of the mapped debris flows in the BGS inventory occurred in areas with the highest potential for instability and approximately 6 % were attributed to areas where the model suggested that debris flows are unlikely or not thought to occur. Model validation in the Cairngorm Mountains indicated a better performance, with 93.50 % in the former and less than 3 % in the latter category. Although the quality of the input datasets and selected methodological approach bear limitations and introduce a number of uncertainties, overall, the proposed susceptibility model performs better than previous attempts, representing a useful tool in the hands of policy-makers, developers and engineers to support regional or national scale development action plans and disaster risk reduction strategies.


2021 ◽  
Author(s):  
Anna Serra-Llobet ◽  
John Radke ◽  
Mathias Kondolf ◽  
Sarah Lindbergh

<p>On January 9, 2018 a series of debris flows killed 23 people and caused over a $1 billion in economic losses in Montecito, Santa Barbara County. The debris flows followed a classic pattern in mountainous areas of southern California: A large wildfire (the 2017 Thomas Fire) burned the headwaters of streams draining the Transverse Ranges southward to the Pacific, creating hydrophobic soil conditions that prevented infiltration of water, resulting in larger runoff during rains. A cell of intense precipitation over Montecito triggered debris flows, affecting areas along the stream channels. </p><p>The 2018 Montecito debris flows raise compelling questions about the role of scientific information in decision making generally, and specifically how hazardous areas along rivers and streams are mapped, how land use is regulated in these zones, and how best to respond in emergency situations. </p><p>This presentation analyzes the evacuation planning process during the emergency management (making emphasis on the maps used by public officials), the recovery planning strategies that the local government adopted after the event, and the evolution of houses in flood hazard areas since the beginning of the 20<sup>th</sup> century, to highlight the importance of exposure as a key element to reduce risk.</p>


2021 ◽  
Author(s):  
Paul Santi ◽  
Francis Rengers

<p>Wildfire is a global phenomenon that is expected to increase in extent and severity due to shifting land management practices and climate change. It removes vegetation, deposits ash, influences water-repellent soil formation, and physically weathers rock. These changes typically lead to increased erosion through sheetwash, rilling, rock spalling, and dry ravel, as well as increased mass movement in the form of floods, debris flows, rockfall, and landslides. Post-wildfire changes in these processes bring about landform changes as hillslopes are lowered and stream channels aggrade or incise at increased rates. Research has documented increases in erosion after wildfire ranging from 2-1000 times the pre-fire rates. Post-wildfire landscape lowering by erosion has been measured in the western U.S. at magnitudes of 2 mm per year, with sediment delivery at the mouths of canyons increased in the range of 160-1000% during the post-wildfire window of disturbance. Furthermore, post-wildfire sediment transport enhances the development of alluvial fans, debris fans, and talus cones. Debris-flow likelihood is increased following wildfire, such that modest rainstorms with <2 year recurrence intervals are typically sufficient to trigger debris flows with volumes much larger (270-540%) than at unburned sites. In the western U.S., as much as 25-50% of alluvial fan accumulation can be attributed to post-wildfire debris flows and other post-wildfire fluvial transport. The window of disturbance to the landscape caused by wildfire is typically on the order of three to four years, with some effects persisting up to 30 years.  Consequently, wildfire is an important agent of geomorphic change.</p>


2003 ◽  
Vol 79 (2) ◽  
pp. 291-296 ◽  
Author(s):  
David Wilford ◽  
Matt Sakals ◽  
John Innes

Forested fans are often crossed by roads and their high-volume stands are attractive for harvesting. Gentle slopes of fans belie the fact that hydrogeomorphic hazards can be present. Fans can be the run out zones for debris flows and they can be subject to floods and debris floods. This study assessed the effect of natural hydrogeomorphic processes on forest practices that were undertaken on 55 fans in west central British Columbia. Forest practices aggravated these processes on 41 (74%) fans, leading to increased erosion and destabilization of fan surfaces and stream channels. Identification of hydrogeomorphic hazards is needed to avoid the adverse effects of forestry practices on fans. Key words: forested fans, forestry on fans, hydrogeomorphic processes, forest practices on fans, forest practices


Sign in / Sign up

Export Citation Format

Share Document