scholarly journals The top-to-the-southeast Sarzeau shear zone and its place in the late-orogenic extensional tectonics of southern Armorica

2009 ◽  
Vol 180 (3) ◽  
pp. 247-261 ◽  
Author(s):  
Paul Turrillot ◽  
Romain Augier ◽  
Michel Faure

Abstract This study presents new structural and monazite chemical U-Th/Pb geochronological constraints for the magmatic rocks of the Golfe du Morbihan area, in southern Brittany, south of the South Armorican shear zone (SASZ). A major extensional shear zone, defined here as the “Sarzeau shear zone” (SSZ), separates Carboniferous migmatites and the Ste-Anne d’Auray type anatectic granite from highly retrogressed micaschists in its footwall and hangingwall, respectively. Late Carboniferous leucogranite dykes, called the Sarzeau granite that intrude the Lower Unit are progressively sheared and mylonitised within the SSZ. The SSZ is characterised by a low to moderately SE-dipping foliation and a NW-SE trending stretching lineation. Kinematic criteria indicate a top-to-the-SE sense of shear. Below the SSZ, NNE-SSW-trending, leucogranitic dykes sometimes present a wall-parallel magmatic layering. These dykes that intrude into vertical NW-SE trending migmatites are interpreted here as emplaced as tension gashes, whose opening direction is consistent with the NW-SE regional stretching. The 316-321 Ma U-Th/Pb ages yielded by the monazite in the dykes comply with the interpretation of a synkinematic magmatism. In the Golfe du Morbihan, geometric relationships between the SSZ and the migmatitic host rocks do not support a previous interpretation as a metamorphic core complex. Regionally, the SSZ kinematics is consistent with the Late Carboniferous orogen-parallel extension, already recognised in other areas of southern Armorica, but does not support the 200 km-long flat detachment fault model.

1999 ◽  
Vol 36 (6) ◽  
pp. 917-943 ◽  
Author(s):  
Olivier Vanderhaeghe ◽  
Christian Teyssier ◽  
Richard Wysoczanski

At the latitude of the Thor-Odin dome, the Shuswap metamorphic core complex exposes a ~15 km thick structural section composed of an upper unit that preserved Mesozoic metamorphism, structures, and cooling ages, separated from the underlying high-grade rocks by low-angle detachment zones. Below the detachments, the core of the complex consists of an amphibolite-facies middle unit overlying a migmatitic lower unit exposed in the core of the Thor-Odin dome. Combined structural and super high resolution ion microprobe (SHRIMP) U-Pb geochronology studies indicate that the pervasive shallowly dipping foliation and east-west lineation developed in the presence of melt during Paleocene time. SHRIMP analyses of complexly zoned zircon grains suggest that the migmatites of the lower unit crystallized at ~56 Ma, and a syntectonic leucogranite at ~60 Ma. We suggest that leucogranite migrated upward from the migmatites through an array of dikes and sills that permeated the middle unit and ponded to form laccoliths spatially related to the detachment zones. The similarity in ages of inherited zircon cores in the two migmatite and the leucogranite samples suggests a genetic link consistent with the structural analysis. Following the crystallization of migmatites, the terrane cooled rapidly, as indicated by argon thermochronology. We propose that exhumation of the core of the Canadian Cordillera during the formation of the Shuswap metamorphic core complex occurred from ~60 to 56 Ma at a time when the crust was significantly partially molten. These structural and temporal relationships suggest a genetic link between mechanical weakening of the crust by partial melting, late-orogenic collapse, and exhumation of high-grade rocks in the hinterland of a thermally mature orogenic belt.


Sign in / Sign up

Export Citation Format

Share Document