Structural and geochronological constraints on the role of partial melting during the formation of the Shuswap metamorphic core complex at the latitude of the Thor-Odin dome, British Columbia

1999 ◽  
Vol 36 (6) ◽  
pp. 917-943 ◽  
Author(s):  
Olivier Vanderhaeghe ◽  
Christian Teyssier ◽  
Richard Wysoczanski

At the latitude of the Thor-Odin dome, the Shuswap metamorphic core complex exposes a ~15 km thick structural section composed of an upper unit that preserved Mesozoic metamorphism, structures, and cooling ages, separated from the underlying high-grade rocks by low-angle detachment zones. Below the detachments, the core of the complex consists of an amphibolite-facies middle unit overlying a migmatitic lower unit exposed in the core of the Thor-Odin dome. Combined structural and super high resolution ion microprobe (SHRIMP) U-Pb geochronology studies indicate that the pervasive shallowly dipping foliation and east-west lineation developed in the presence of melt during Paleocene time. SHRIMP analyses of complexly zoned zircon grains suggest that the migmatites of the lower unit crystallized at ~56 Ma, and a syntectonic leucogranite at ~60 Ma. We suggest that leucogranite migrated upward from the migmatites through an array of dikes and sills that permeated the middle unit and ponded to form laccoliths spatially related to the detachment zones. The similarity in ages of inherited zircon cores in the two migmatite and the leucogranite samples suggests a genetic link consistent with the structural analysis. Following the crystallization of migmatites, the terrane cooled rapidly, as indicated by argon thermochronology. We propose that exhumation of the core of the Canadian Cordillera during the formation of the Shuswap metamorphic core complex occurred from ~60 to 56 Ma at a time when the crust was significantly partially molten. These structural and temporal relationships suggest a genetic link between mechanical weakening of the crust by partial melting, late-orogenic collapse, and exhumation of high-grade rocks in the hinterland of a thermally mature orogenic belt.


2000 ◽  
Vol 137 (5) ◽  
pp. 495-516 ◽  
Author(s):  
ARAL I. OKAY ◽  
MUHARREM SATIR

A metamorphic core complex of latest Oligocene age crops out in the Kazdağ mountain range in northwest Turkey. The footwall of the core complex consists of gneiss, amphibolite and marble metamorphosed at 5 ± 1 kbar and 640° ± 50 °C. The average muscovite and biotite Rb/Sr ages from the gneisses are 19 Ma and 22 Ma, respectively, and imply high temperature metamorphism during latest Oligocene times. The hangingwall is made up of an unmetamorphosed Lower Tertiary oceanic accretionary melange with Upper Cretaceous eclogite lenses. The hangingwall and footwall are separated by an extensional ductile shear zone, two kilometres thick. Mylonites and underlying high-grade metamorphic rocks show a N-trending mineral lineation with the structural fabrics indicating down-dip, top-to-the-north shear sense. The shear zone, the accretionary melange and the high-grade metamorphic rocks are cut by an undeformed granitoid with a 21 Ma Rb/Sr biotite age, analytically indistinguishable from the Rb/Sr biotite ages in the surrounding footwall gneisses. The estimated pressure of the metamorphism, and that of the granitoid emplacement, indicate that the high-grade metamorphic rocks were rapidly exhumed at ∼ 24 Ma from a depth of ∼ 14 km to ∼ 7 km by activity along the shear zone. The subsequent exhumation of the metamorphic rocks to the surface occurred during Pliocene–Quaternary times in a transpressive ridge between two overstepping fault segments of the North Anatolian Fault zone. The high-grade metamorphic rocks of the Kazdağ range are surrounded by voluminous calc-alkaline volcanic and plutonic rocks of Late Oligocene–Early Miocene age, which formed above the northward-dipping Hellenic subduction zone. The magmatic arc setting of the core complex and stratigraphic evidence for subdued topography in northwest Turkey prior to the onset of extension suggest that the latest Oligocene regional extension was primarily related to the roll-back of the subduction zone rather than to the gravitational collapse.



2009 ◽  
Vol 180 (3) ◽  
pp. 247-261 ◽  
Author(s):  
Paul Turrillot ◽  
Romain Augier ◽  
Michel Faure

Abstract This study presents new structural and monazite chemical U-Th/Pb geochronological constraints for the magmatic rocks of the Golfe du Morbihan area, in southern Brittany, south of the South Armorican shear zone (SASZ). A major extensional shear zone, defined here as the “Sarzeau shear zone” (SSZ), separates Carboniferous migmatites and the Ste-Anne d’Auray type anatectic granite from highly retrogressed micaschists in its footwall and hangingwall, respectively. Late Carboniferous leucogranite dykes, called the Sarzeau granite that intrude the Lower Unit are progressively sheared and mylonitised within the SSZ. The SSZ is characterised by a low to moderately SE-dipping foliation and a NW-SE trending stretching lineation. Kinematic criteria indicate a top-to-the-SE sense of shear. Below the SSZ, NNE-SSW-trending, leucogranitic dykes sometimes present a wall-parallel magmatic layering. These dykes that intrude into vertical NW-SE trending migmatites are interpreted here as emplaced as tension gashes, whose opening direction is consistent with the NW-SE regional stretching. The 316-321 Ma U-Th/Pb ages yielded by the monazite in the dykes comply with the interpretation of a synkinematic magmatism. In the Golfe du Morbihan, geometric relationships between the SSZ and the migmatitic host rocks do not support a previous interpretation as a metamorphic core complex. Regionally, the SSZ kinematics is consistent with the Late Carboniferous orogen-parallel extension, already recognised in other areas of southern Armorica, but does not support the 200 km-long flat detachment fault model.



Lithos ◽  
2002 ◽  
Vol 61 (3-4) ◽  
pp. 103-125 ◽  
Author(s):  
Britt H Norlander ◽  
Donna L Whitney ◽  
Christian Teyssier ◽  
Olivier Vanderhaeghe


2019 ◽  
Vol 132 (1-2) ◽  
pp. 149-197 ◽  
Author(s):  
Thomas N. Lamont ◽  
Michael P. Searle ◽  
David J. Waters ◽  
Nick M.W. Roberts ◽  
Richard M. Palin ◽  
...  

Abstract The island of Naxos, Greece, has been previously considered to represent a Cordilleran-style metamorphic core complex that formed during Cenozoic extension of the Aegean Sea. Although lithospheric extension has undoubtedly occurred in the region since 10 Ma, the geodynamic history of older, regional-scale, kyanite- and sillimanite-grade metamorphic rocks exposed within the core of the Naxos dome is controversial. Specifically, little is known about the pre-extensional prograde evolution and the relative timing of peak metamorphism in relation to the onset of extension. In this work, new structural mapping is presented and integrated with petrographic analyses and phase equilibrium modeling of blueschists, kyanite gneisses, and anatectic sillimanite migmatites. The kyanite-sillimanite–grade rocks within the core complex record a complex history of burial and compression and did not form under crustal extension. Deformation and metamorphism were diachronous and advanced down the structural section, resulting in the juxtaposition of several distinct tectono-stratigraphic nappes that experienced contrasting metamorphic histories. The Cycladic Blueschists attained ∼14.5 kbar and 470 °C during attempted northeast-directed subduction of the continental margin. These were subsequently thrusted onto the more proximal continental margin, resulting in crustal thickening and regional metamorphism associated with kyanite-grade conditions of ∼10 kbar and 600–670 °C. With continued shortening, the deepest structural levels underwent kyanite-grade hydrous melting at ∼8–10 kbar and 680–750 °C, followed by isothermal decompression through the muscovite dehydration melting reaction to sillimanite-grade conditions of ∼5–6 kbar and 730 °C. This decompression process was associated with top-to-the-NNE shearing along passive-roof faults that formed because of SW-directed extrusion. These shear zones predated crustal extension, because they are folded around the migmatite dome and are crosscut by leucogranites and low-angle normal faults. The migmatite dome formed at lower-pressure conditions under horizontal constriction that caused vertical boudinage and upright isoclinal folds. The switch from compression to extension occurred immediately following doming and was associated with NNE-SSW horizontal boudinage and top-to-the-NNE brittle-ductile normal faults that truncate the internal shear zones and earlier collisional features. The Naxos metamorphic core complex is interpreted to have formed via crustal thickening, regional metamorphism, and partial melting in a compressional setting, here termed the Aegean orogeny, and it was exhumed from the midcrust due to the switch from compression to extension at ca. 15 Ma.



2001 ◽  
Vol 38 (11) ◽  
pp. 1615-1625 ◽  
Author(s):  
M Lorencak ◽  
D Seward ◽  
O Vanderhaeghe ◽  
C Teyssier ◽  
J P Burg

Nine zircon and 18 apatite fission-track ages are used to determine the low-temperature cooling history of part of the Shuswap metamorphic core complex of the Canadian Cordillera. The zircon ages range from 54 to 38 Ma and the apatite ages from 49 to 28 Ma. These ages reveal a similarity in cooling histories across the Shuswap units until temperatures of ~250°C were reached at about 45 Ma. From this time onwards, the regional cooling pattern within the core complex was controlled by the relative movements on two normal faults, the Victor Creek fault and the Columbia River fault. Cooling since 45 Ma was variable, depending on the structural level of the sample. On this basis four thermotectonic units are defined. These units are controlled by normal faults that crosscut the lithological units of the core complex and reflect the latest stage of its evolution.



Sign in / Sign up

Export Citation Format

Share Document