Holocene sedimentary infilling of a tide-dominated estuarine mouth. The example of the macrotidal Seine estuary (NW France)

2010 ◽  
Vol 181 (2) ◽  
pp. 87-98 ◽  
Author(s):  
Bernadette Tessier ◽  
Nicolas Delsinne ◽  
Philippe Sorrel

Abstract The results of a seismo-stratigraphic study performed to study the Holocene sedimentary infilling at the mouth of the Seine River are presented. Combined data comprise very high resolution seismic reflection profiles, vibrocores, up to 4.5 m long, radiocarbon dating and old bathymetric charts. The infill is divided into two main stages: the transgressive systems tract, relative to the early Holocene high rate of sea-level rise, from 9000 to 7000 cal B.P., made of fine-grained, organic-rich, tidal flat to swamp deposits; the highstand systems tract, relative to the middle to late Holocene low rate of sea-level rise, from 7000 to 3000 cal B.P., characterized by the development of the high energy estuarine body above the main axis of the incised valley. Simultaneously, on the southern edge of the valley, a coastal barrier constructed above a bedrock plateau under the dominant action of waves. At 3000 cal B.P., probably in relation to a major climatic deterioration, the destruction of the barrier occurred and the tidal estuarine body expanded finally over the whole incised valley area. The rate of sea-level rise and the bedrock morphology appear to be the two main key-factors that control the sedimentary infilling architecture of this macrotidal, tide-dominated estuarine setting at the pluri-millenium Holocene time scale. Also, rapid climate changes determine part of the infill pattern, especially during the late Holocene sea-level highstand context.

Geosciences ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 497
Author(s):  
Vincenzo De Santis ◽  
Massimo Caldara ◽  
Luigi Pennetta

Coastal deposits/barriers react to sea-level rise through rollover or overstepping. Preserved coastal deposits/barriers allow us to examine coastal responses to sea-level rise, an important aspect within the context of climate change. This study identifies the Ofanto incised valley and examines the possible factors that caused the considerable difference in shape between this valley and adjacent valleys: the Carapelle and Cervaro incised valley and Manfredonia incised valley. In addition, this study assesses the response of transgressive units to stepped sea-level rise with a focus on the evolution of palaeo-barriers/shorelines on the continental shelf and within the infill of Ofanto incised valley. We identified the traces of two slowstands in sea-level rise: the first, short-lived at a centennial scale, interrupted Meltwater Pulse 1A; the second is referable to part of Bølling-Allerød and Younger Dryas. During these two slowstands, two barrier-shoreface/estuarine-backbarrier systems formed. Meltwater Pulse 1A and Meltwater Pulse 1B led to overstepping and partial preservation of these systems in the form of aligned topographic highs. The second slowstand gave rise to continuous landward backstepping of the coastal barrier system; during the following Meltwater Pulse 1B (MWP-1B), landward rollover of the coeval barrier/backbarrier system occurred.


The Holocene ◽  
2018 ◽  
Vol 29 (1) ◽  
pp. 26-44 ◽  
Author(s):  
Manel Leira ◽  
Maria C Freitas ◽  
Tania Ferreira ◽  
Anabela Cruces ◽  
Simon Connor ◽  
...  

We examine the Holocene environmental changes in a wet dune slack of the Portuguese coast, Poço do Barbarroxa de Baixo. Lithology, organic matter, biological proxies and high-resolution chronology provide estimations of sediment accumulation rates and changes in environmental conditions in relation to sea-level change and climate variability during the Holocene. Results show that the wet dune slack was formed 7.5 cal. ka BP, contemporaneous with the last stages of the rapid sea-level rise. This depositional environment formed under frequent freshwater flooding and water ponding that allowed the development and post-mortem accumulation of abundant plant remains. The wetland evolved into mostly palustrine conditions over the next 2000 years, until a phase of stabilization in relative sea-level rise, when sedimentation rates slowed down to 0.04 mm yr−1, between 5.3 and 2.5 cal. ka BP. Later, about 0.8 cal. ka BP, high-energy events, likely due to enhanced storminess and more frequent onshore winds, caused the collapse of the foredune above the wetlands’ seaward margin. The delicate balance between hydrology (controlled by sea-level rise and climate change), sediment supply and storminess modulates the habitat’s resilience and ecological stability. This underpins the relevance of integrating past records in coastal wet dune slacks management in a scenario of constant adaptation processes.


2018 ◽  
Vol 10 (1) ◽  
pp. 109 ◽  
Author(s):  
Curt D. Peterson ◽  
Sandy Vanderburgh

The late-Holocene record of tidal flat deposition in the large shallow Willapa Bay estuary (43 km in length), located in the Columbia River Littoral Cell (CRLC) system (160 km length), was investigated with new vibracores (n=30) and gouge cores (n=8), reaching 2–5 m depth subsurface. Reversing up-core trends of muddy sand to peaty mud deposits in marginal tidal flat settings demonstrate episodic submergence events resulting from cyclic tectonic uplift and subsidence (1–2 m) in the Cascadia subduction zone. These short-term reversals are superimposed on longer-term trends of overall sediment coarsening-up, which represent the transgression of higher-energy sandy tidal flats over pre-existing lower-energy tidal flat mud and peaty mud deposits in late-Holocene time. Fining-up trends associated with channel lateral migration and accretionary bank deposition occurred only infrequently in the broad intertidal flats of Willapa Bay. Vibracores and gouge cores were dated by 14C (n=16) and paleo-subsidence event contacts (n=17). Vibracore median probability 14C ages ranged from 0 to 6,992 yr BP and averaged 2,174 yr BP. Dated sample ages and corresponding depths of tidal flat deposits yield net sedimentation rates of 0.9–1.2 m ka-1, depending on the averaging methods used. Net sedimentation rates in the intertidal flat settings (~1.0 m ka-1) are comparable to the rate of net sea level rise (~1.0 m ka-1), as based on dated paleo-tidal marsh deposits in Willapa Bay. Reported modern inputs of river sand (total=1.77x104 m3 yr-1), from the three small rivers that flow into Willapa Bay, fall well short of the estimated increasing accommodation space (1.9x105 m3 yr-1) in the intertidal (MLLW-MHHW) setting (1.9x108 m2 surface area) during the last 3 ka, or 3.0 m of sea level rise. The under-supply of tributary sand permitted the influx of littoral sand (1.1x105 m3 yr-1) into Willapa Bay, as based on the net sedimentation rate (~1.0 m ka-1) and textural composition (average 60 % littoral sand) in analyzed core sections (n=179). The long-term littoral sand sink in Willapa Bay’s intertidal setting (55 % of total estuary area) is estimated to be about 5 % of the Columbia River supply of sand to the CRLC system, and about 30% relative to the littoral sand accumulated in barrier spits and beach plains during late-Holocene time. A 2.0 m rise in future sea level could yield a littoral sand sink of 2.2x108 m3 in the Willapa Bay intertidal setting, resulting in an equivalent shoreline retreat of 600 m along a 50 km distance of the barrier spit and beach plains that are located adjacent to the Willapa Bay tidal inlet. Willapa Bay serves as proxy for potential littoral sand sinks in other shallow mesotidal estuary-barrier-beach systems around the world following future global sea level rise.


Author(s):  
Maurizio D'Anna ◽  
Deborah Idier ◽  
Bruno Castelle ◽  
Goneri Le Cozannet ◽  
Jeremy Rohmer ◽  
...  

Chronic erosion of sandy coasts is a continuous potential threat for the growing coastal communities worldwide. The prediction of shoreline evolution is therefore key issue for robust decision making worldwide, especially in the context of climate change. Shorelines respond to various complex processes interacting at several temporal and spatial scales, making shoreline reconstructions and predictions challenging and uncertain, especially on long time scales (e.g. decades or century). Despite the increasing progresses in addressing uncertainties related to the physics of Sea Level Rise, very little effort is made towards understanding and reducing the uncertainties related to wave driven coastal response. To fill this gap, we analyse the uncertainties associated with long-term (2 decades) modelling of the cross-shore transport dominated high-energy sandy coast around Truc Vert beach, SW France, which has been surveyed semi-monthly over the last 12 years.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/_NBJ2v-koMs


2007 ◽  
Vol 44 (10) ◽  
pp. 1453-1465 ◽  
Author(s):  
Julia F Daly ◽  
Daniel F Belknap ◽  
Joseph T Kelley ◽  
Trevor Bell

Differential sea-level change in formerly glaciated areas is predicted owing to variability in extent and timing of glacial coverage. Newfoundland is situated close to the margin of the former Laurentide ice sheet, and the orientation of the shoreline affords the opportunity to investigate variable rates and magnitudes of sea-level change. Analysis of salt-marsh records at four sites around the island yields late Holocene sea-level trends. These trends indicate differential sea-level change in recent millennia. A north–south geographic trend reflects submergence in the south, very slow sea-level rise in the northeast, and a recent transition from falling to rising sea-level at the base of the Northern Peninsula. This variability is best explained as a continued isostatic response to deglaciation.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Miriam C. Jones ◽  
G. Lynn Wingard ◽  
Bethany Stackhouse ◽  
Katherine Keller ◽  
Debra Willard ◽  
...  

2015 ◽  
Vol 45 (suppl 1) ◽  
pp. 13-27 ◽  
Author(s):  
Roberto Cesar de Mendonça Barbosa ◽  
Afonso César Rodrigues Nogueira ◽  
Fábio Henrique Garcia Domingos

ABSTRACTGlaciotectonic features studied in the siliciclastic deposits of Cabeças Formation, Upper Devonian, represent the first evidence of Famennian glaciation in Southeastern Parnaíba Basin, Brazil. Outcrop-based stratigraphic and facies analyses combined with geometric-structural studies of these deposits allowed defining three facies association (FA). They represent the advance-retreat cycle of a glacier. There are: delta front facies association (FA1) composed of massive mudstone, sigmoidal, medium-grained sandstone with cross-bedding and massive conglomerate organized in coarsening- and thickening-upward cycles; subglacial facies association (FA2) with massive, pebbly diamictite (sandstone, mudstone and volcanic pebbles) and deformational features, such as intraformational breccia, clastic dikes and sills of diamictite, folds, thrust and normal faults, sandstone pods and detachment surface; and melt-out delta front facies associations (FA3), which include massive or bedded (sigmoidal cross-bedding or parallel bedding) sandstones. Three depositional phases can be indicated to Cabeças Formation: installation of a delta system (FA1) supplied by uplifted areas in the Southeastern border of the basin; coastal glacier advance causing tangential substrate shearing and erosion (FA1) in the subglacial zone (FA2), thus developing detachment surface, disruption and rotation of sand beds or pods immersed in a diamicton; and retreat of glaciers accompanied by relative sea level-rise, installation of a high-energy melt-out delta (FA3) and unloading due to ice retreat that generates normal faults, mass landslide, folding and injection dykes and sills. The continuous sea-level rise led to the deposition of fine-grained strata of Longá Formation in the offshore/shoreface transition in the Early Carboniferous.


1990 ◽  
Vol 34 (1) ◽  
pp. 33-46 ◽  
Author(s):  
Joseph F. Donoghue

AbstractTrends are discernible in the estimates of late Holocene rates of sedimentation and sea-level rise for the Chesapeake Bay. During most of the Holocene Epoch sedimentation rates and relative sea-level rise were equal, within the limits of measurement, at approximately 1 mm yr−1. Sedimentation rates measured over the past century, however, are nearly an order of magnitude higher, while the rate of relative sea-level rise for the Chesapeake Bay now averages 3.3 mm yr−1, as measured on long-term tide gauge records. When the acceleration in these rates occurred is uncertain, but it appears to have been confined to the past millennium, and probably to the past few centuries. The rapid sedimentation rates recorded during historic time may be a temporary disequilibrium that has resulted from a recent acceleration in the rate of relative sea-level rise.


2020 ◽  
Author(s):  
Soledad García-Gil ◽  
Víctor Cartelle ◽  
Castor Muñoz-Sobrino ◽  
Natalia Martínez-Carreño ◽  
Iria García-Moreiras

<p>Understanding coastal responses to relative sea level rise is key to be able to plan for future changes and develop a suitable managing strategy. The sedimentary record of the Late-Pleistocene and Holocene transgression provides a natural laboratory to study the long-term changes induced in coastal landscapes by the rapid sea level rise. As sea level rises, coastal morphology continually adapts towards equilibrium changing the landscape and reshaping the distribution of sedimentary environments.<br>The Ría de Ferrol is a confined tide-dominated incised valley located in the mesotidal passive Atlantic margin of western Galicia (NW Spain).  A multidisciplinary approach was used to identify the elements of sedimentary architecture within its sedimentary record since the Last Glacial Maximum. The sedimentary evolution was reconstructed combining seismic and sedimentary facies analysis with radiocarbon, geochemical and pollen data.<br>The Ría de Ferrol is characterised by a particular morphology with a rock-incised narrow channel in the middle of the basin (the Ferrol Strait) connecting an inner shallower sector with an outer deeper sector. The inner sector is characterised by low energetic conditions and is where the main fluvial inputs occur. The outer sector is connected to the shelf.<br>The main factor influencing the sedimentary evolution of the Ría de Ferrol incised valley was Late Pleistocene and Holocene sea-level rise. However, this evolution was modulated by the antecedent morphology, particularly once the middle strait became flooded during the Holocene transgression. Three main phases of evolution are distinguished: a fluvial valley drained by a braided river system, a tide-dominated estuary and a shallow marine basin (ria).<br>During the lowstand of the Last Glacial Maximum (ca 20 kyr BP), the ria was a fluvial valley whose sediments are mainly preserved in the inner sector. Sediments cores recovered sediments from ponds and stagnant areas, dated to be older than 10790-11170 cal yr BP.<br>During the Holocene, the basin turned into a tide-dominated estuary whose facies distribution was conditioned by the strait. The strait acted as a rock-bounded tidal inlet enhancing tidal erosion and deposition at both ends, where an ebb-tidal delta and tidal sandbanks appear. At this time, extensive tidal flats occupied most of the inner sector, dissected by estuarine channels of varied dimensions. Radiocarbon data showed ages from 8610-8910 to 5760-5940 cal yr BP.<br>An erosive episode is identified after 6 cal kyr BP with the formation of a ravinement surface. Wave and tidal energy were split by the middle strait. A wave ravinement surface is identified in the outer sector, while a coetaneous tidal ravinement surface occurs in the inner sector.<br>Slow sea-level rise after ca 4 ka BP finally forced rivers to retreat to the present position, causing the dispersion of their energy and leading to the final evolution of the area into a fully marine system.</p>


2010 ◽  
Vol 181 (1) ◽  
pp. 27-36 ◽  
Author(s):  
Pierre Sabatier ◽  
Laurent Dezileau ◽  
Mickaël Barbier ◽  
Olivier Raynal ◽  
Johanna Lofi ◽  
...  

Abstract The central part of the Gulf of Lions shoreline is characterized by many coastal wetlands that resulted from the interaction between a process of shoreline regularization by migrations of littoral barriers and a slow filling of the back-barrier areas by the riverine and marine inputs. Analyses of Late-Holocene deposits with a very high-resolution multi-proxy study of two sediment cores, allow us to reconstruct the evolution of this coastal system. Two main Holocene sediment units are identified overlying a Pliocene carbonate continental formation. The lower unit consists of sandy and pebbly marine sediments deposited around 7800 B.P., during the final stand of the last sea level rise. Just above, the upper unit displays lagoonal grey clay silts with shells and some intercalated layers of silty sands related to paleostorm events. The age model was established from radiocarbon dating, for the oldest part of the core. Over the last century, sedimentation rates were calculated using the CFCS 210Pb model, together with 137Cs data. Radiocarbon data show an increase in the accumulation rate from the base to the top of cores. Marine sand units related to the last transgressive deposit allow to refine the curve of Holocene post-glacial sea level rise. Sedimentological and faunal analyses associated with chronological data provide a means for reconstructing the Late-Holocene paleoenvironments along this part of the coast and suggest that the final closure of the coastal lagoon by the sandy barrier occurred at around 730 ± 120 yr cal B.P. The beginning of this closure, together with the progradation of the coastal plain, could be responsible for the decline in economic activity of the Lattara harbour during the Roman period.


Sign in / Sign up

Export Citation Format

Share Document