Evolution tectonique de la montagne Sainte-Victoire en Provence

1964 ◽  
Vol S7-VI (1) ◽  
pp. 91-106 ◽  
Author(s):  
Georges Corroy ◽  
Jean Pierre Durand ◽  
Claude Tempier

Abstract The Sainte Victoire mountain, NE of Marseilles in southern France, is an eroded, thrust-faulted anticline of Jurassic limestone and dolomite. The broad fold, with a shorter south limb, developed in the late Cretaceous, and was eroded during the Eocene. The fold was overturned and split by a thrust fault in the late Eocene. Erosion again occurred, and further deformation took place in the late Miocene.

Author(s):  
Clara Guatame ◽  
Marco Rincón

AbstractThe Piedemonte Llanero Basin is located on the eastern side of the Eastern Cordillera of the Colombian Andes. It has been the subject of numerous geological studies carried out for the oil sector, mainly. This study presents the coal-petrographical features of 15 coal seams of four geological formations from Late Cretaceous to Middle Miocene (Chipaque formation, Palmichal group, Arcillas del Limbo formation, and San Fernando formation). Analysis of 33 samples indicates enrichment in vitrinite, while liptinite and inertinite concentrations vary according to the stratigraphic position. Reflectance indicates that the coal range gradually decreases from highly volatile bituminous C (Chipaque formation) to subbituminous C (San Fernando formation). The microlithotypes with the highest concentrations are clarite and vitrinertoliptite. Maceral composition and coal facies indicate changes in the depositional conditions of the sequence. The precursor peat from Late Cretaceous to Late Paleocene accumulated under limnic conditions followed by telmatic in Late Eocene–Early Miocene. The coal facies indices show wet conditions in forest swamps with variations in the flooding surface, influxes of brackish water and good tissue preservation. The tectonic conditions along the Piedemonte Llanero basin is evident, from post-rift to foreland basin, evidenced by oxic and anoxic periods reflected in the maceral composition and its morphology. The coal environment corresponds to an estuarine system started in the Chipaque formation evolving to the lacustrine conditions in the San Fernando formation.


2021 ◽  
Vol 8 (10) ◽  
Author(s):  
Cecily S. C. Nicholl ◽  
Eloise S. E. Hunt ◽  
Driss Ouarhache ◽  
Philip D. Mannion

Notosuchians are an extinct clade of terrestrial crocodyliforms with a particularly rich record in the late Early to Late Cretaceous (approx. 130–66 Ma) of Gondwana. Although much of this diversity comes from South America, Africa and Indo-Madagascar have also yielded numerous notosuchian remains. Three notosuchian species are currently recognized from the early Late Cretaceous (approx. 100 Ma) Kem Kem Group of Morocco, including the peirosaurid Hamadasuchus rebouli . Here, we describe two new specimens that demonstrate the presence of at least a fourth notosuchian species in this fauna. Antaeusuchus taouzensis n. gen. n. sp. is incorporated into one of the largest notosuchian-focused character-taxon matrices yet to be compiled, comprising 443 characters scored for 63 notosuchian species, with an increased sampling of African and peirosaurid species. Parsimony analyses run under equal and extended implied weighting consistently recover Antaeusuchus as a peirosaurid notosuchian, supported by the presence of two distinct waves on the dorsal dentary surface, a surangular which laterally overlaps the dentary above the mandibular fenestra, and a relatively broad mandibular symphysis. Within Peirosauridae, Antaeusuchus is recovered as the sister taxon of Hamadasuchus . However, it differs from Hamadasuchus with respect to several features, including the ornamentation of the lateral surface of the mandible, the angle of divergence of the mandibular rami, the texture of tooth enamel and the shape of the teeth, supporting their generic distinction. We present a critical reappraisal of the non-South American Gondwanan notosuchian record, which spans the Middle Jurassic–late Eocene. This review, as well as our phylogenetic analyses, indicate the existence of at least three approximately contemporaneous peirosaurid lineages within the Kem Kem Group, alongside other notosuchians, and support the peirosaurid affinities of the ‘trematochampsid’ Miadanasuchus oblita from the Maastrichtian of Madagascar. Furthermore, the Cretaceous record demonstrates the presence of multiple lineages of approximately contemporaneous notosuchians in several African and Madagascan faunas, and supports previous suggestions regarding an undocumented pre-Aptian radiation of Notosuchia. By contrast, the post-Cretaceous record is depauperate, comprising rare occurrences of sebecosuchians in north Africa prior to their extirpation.


2012 ◽  
Vol 372 (1) ◽  
pp. 385-419 ◽  
Author(s):  
Matthew G. Booth ◽  
Alastair H. F. Robertson ◽  
Kemal Tasli ◽  
Nurdan İnan ◽  
Ulvi Can Ünlügenç ◽  
...  

2009 ◽  
Vol 288 (1-3) ◽  
pp. 53-91 ◽  
Author(s):  
Wighart von Koenigswald ◽  
Irina Ruf ◽  
Philip D. Gingerich

2007 ◽  
Vol 3 (6) ◽  
pp. 709-711 ◽  
Author(s):  
Nicholas D Pyenson ◽  
David M Haasl

Whale-fall communities support a deep-sea invertebrate assemblage that subsists entirely on the decaying carcasses of large cetaceans. The oldest whale-falls are Late Eocene in age, but these early whale-falls differ in faunal content and host cetacean size from Neogene and Recent whale-falls. Vesicomyid bivalves, for example, are major components of the sulphophilic stage in Miocene and Recent whale-fall communities, but they are absent from Palaeogene fossil whale-falls. The differences between Palaeogene and Neogene communities led to the hypothesis that the origin of modern whale-fall communities was linked with the evolution of extremely large mysticetes, which provided sufficient biomass and oil to sustain the modern complement of whale-fall invertebrates. Here, we describe a fossil whale-fall community from the Miocene of California, showing vesicomyid bivalves in direct association with a host mysticete smaller than the adult individuals of any living mysticete species. This association, which is the youngest yet reported from the Neogene of North America, demonstrates that body size is not a necessary factor for the formation of modern whale-fall communities. Instead, we suggest that high skeletal oil content may have been a more important factor, which, based on the age of the fossil whale-fall, evolved at least by the Late Miocene.


1998 ◽  
Vol 135 (1) ◽  
pp. 101-119 ◽  
Author(s):  
IVAN S. ZAGORCHEV

The Paril Formation (South Pirin and Slavyanka Mountains, southwestern Bulgaria) and the Prodromos Formation (Orvilos and Menikion Mountains, northern Greece) consist of breccia and olistostrome built up predominantly of marble fragments from the Precambrian Dobrostan Marble Formation (Bulgaria) and its equivalent Bos-Dag Marble Formation (Greece). The breccia and olistostrome are interbedded with thin layers of calcarenites (with occasional marble pebbles), siltstones, sandstones and limestones. The Paril and Prodromos formations unconformably cover the Precambrian marbles, and are themselves covered unconformably by Miocene and Pliocene sediments (Nevrokop Formation). The rocks of the Paril Formation are intruded by the Palaeogene (Late Eocene–Early Oligocene) Teshovo granitoid pluton, and are deformed and preserved in the two limbs of a Palaeogene anticline cored by the Teshovo pluton (Teshovo anticline). The Palaeocene–Middle Eocene age of the formations is based on these contact relations, and on occasional finds of Tertiary pollen, as well as on correlations with similar formations of the Laki (Kroumovgrad) Group throughout the Rhodope region.The presence of Palaeogene sediments within the pre-Palaeogene Pirin–Pangaion structural zone invalidates the concept of a ‘Rhodope metamorphic core complex’ that supposedly has undergone Palaeogene amphibolite-facies regional metamorphism, and afterwards has been exhumed by rapid crustal extension in Late Oligocene–Miocene times along a regional detachment surface. Other Palaeogene formations of pre-Priabonian (Middle Eocene and/or Bartonian) or earliest Priabonian age occur at the base of the Palaeogene sections in the Mesta graben complex (Dobrinishka Formation) and the Padesh basin (Souhostrel and Komatinitsa formations). The deposition of coarse continental sediments grading into marine formations (Laki or Kroumovgrad Group) in the Rhodope region at the beginning of the Palaeogene Period marks the first intense fragmentation of the mid- to late Cretaceous orogen, in particular, of the thickened body of the Morava-Rhodope structural zone situated to the south of the Srednogorie zone. The Srednogorie zone itself was folded and uplifted in Late Cretaceous time, thus dividing Palaeocene–Middle Eocene flysch of the Louda Kamchiya trough to the north, from the newly formed East Rhodope–West Thrace depression to the south.


Sign in / Sign up

Export Citation Format

Share Document