Wide Field Electromagnetic Method for Shale Gas Exploration in Southern China: A Case Study

2017 ◽  
Vol 22 (3) ◽  
pp. 279-289 ◽  
Author(s):  
Bo Yuan ◽  
Diquan Li ◽  
Richard C. Bayless
2017 ◽  
Vol 14 (3) ◽  
pp. 441-448 ◽  
Author(s):  
Xue-Li Yang ◽  
Bo Li ◽  
Chuan-Sheng Peng ◽  
Yang Yang

2020 ◽  
Vol 27 (11) ◽  
pp. 3388-3397
Author(s):  
Zhong-hong Yu ◽  
Ling-qin Yan ◽  
Zhi-jie Cai ◽  
Jin-hai Wang ◽  
Yong-feng Xu ◽  
...  

Author(s):  
Qiyang Gou ◽  
Shang Xu ◽  
Fang Hao ◽  
Yangbo Lu ◽  
Zhiguo Shu ◽  
...  

The Wufeng-Longmaxi shales and the Niutitang shales are the most important organic-rich marine shales in southern China. To fully understand the significant difference in drilling results between the two sets of shales, the accumulation conditions of shale gas were systematically compared. The Niutitang shales have a superior material base of hydrocarbon generation for higher total organic carbon than the Wufeng-Longmaxi shales. Due to the influence of hydrothermal activities and carbonization of organic matter, however, the porosity, pore volume, pore size, and pore connectivity of Niutitang shales is obviously lower than that of Wufeng-Longmaxi shales. The natural fractures of Wufeng-Longmaxi shales are dominated by horizontal bedding fractures, and most of them are filled by calcite. By contrast, the high dip-angle fractures are more developed in the Niutitang shales. Especially, these fractures remain open in stages during the process of serious uplift and denudation movements. Thus, the seal conditions of the Niutitang shales are poor, which is further not conducive to the enrichment of shale gas. Our work also suggests that the exploration and development of highly over matured marine shales in southern China should follow the principle of “high to find low, and strong to find weak.”


2015 ◽  
Vol 8 (1) ◽  
pp. 149-154 ◽  
Author(s):  
Jun Gu ◽  
Ju Huang ◽  
Su Zhang ◽  
Xinzhong Hu ◽  
Hangxiang Gao ◽  
...  

The purpose of this study is to improve the cementing quality of shale gas well by mud cake solidification, as well as to provide the better annular isolation for its hydraulic fracturing development. Based on the self-established experimental method and API RP 10, the effects of mud cake solidifiers on the shear strength at cement-interlayer interface (SSCFI) were evaluated. After curing for 3, 7, 15 and 30 days, SSCFI was remarkably improved by 629.03%, 222.37%, 241.43% and 273.33%, respectively, compared with the original technology. Moreover, the compatibility among the mud cake solidifier, cement slurry, drilling fluid and prepad fluid meets the safety requirements for cementing operation. An application example in a shale gas well (Yuanye HF-1) was also presented. The high quality ratio of cementing quality is 93.49% of the whole well section, while the unqualified ratio of adjacent well (Yuanba 9) is 84.46%. Moreover, the cementing quality of six gas-bearing reservoirs is high. This paper also discussed the mechanism of mud cake solidification. The reactions among H3AlO42- and H3SiO4- from alkali-dissolved reaction, Na+ and H3SiO4- in the mud cake solidifiers, and Ca2+ and OH- from cement slurry form the natrolite and calcium silicate hydrate (C-S-H) with different silicate-calcium ratio. Based on these, SSCFI and cementing quality were improved.


Sign in / Sign up

Export Citation Format

Share Document