scholarly journals Reproductive success of Haematopus palliatus, the Common oystercatcher, and anthropic activities in the Marvilla Circuit, Pantanos de Villa, Lima- Peru

2020 ◽  
pp. e020
Author(s):  
Ashley Arenas ◽  
Nuria Yelitza Camarena Gamarra ◽  
Jodie Ann Ponce Alarcon ◽  
Alejandro Alexis Cotillo Mendoza
1996 ◽  
Vol 7 (3) ◽  
pp. 334-340 ◽  
Author(s):  
Paula Stockley ◽  
Jeremy B. Searle ◽  
David W. Macdonald ◽  
Catherine S. Jones

2020 ◽  
Author(s):  
Efrat Dener ◽  
Hagai Shemesh ◽  
Itamar Giladi

Abstract Aims The evolution and expression of dispersal-related traits are intertwined with those of other life-history functions and are manifested within various physiological constraints. Such a relationship is predicted between inbreeding levels and dispersability, which may be anatomically and ontogenetically linked so that the selection pressures on one may affect the other. While both the effect of inbreeding on reproductive success and on dispersal strategies received much attention, only a few studies considered both simultaneously. Furthermore, such studies often rely on two dichotomic representations of breeding and dispersal: using selfing vs. outcrossing as a representation of breeding level, and dispersal ratio as the sole representation of dispersal strategy. Methods Here we used pollination experiments in the heterocarpic Crepis sancta (Asteraceae) to expand in two different manners on the common practice of using dichotomic representations of breeding and dispersal. First, we used pollination treatments that represent a continuum from selfing through pollination by kin to pollination by a distant neighbor. Second, we measured a whole set of continuous morphological and dispersal-related traits, in addition to measurements of reproductive success and dispersal ratio. Important findings The proportion of developed capitula and the number of both dispersed and non-dispersed achenes were significantly lower in the self-pollination treatment in comparison to the out-crossed treatments. The effect of pollen sources on dispersal ratio was not statistically significant, though self-pollinated plants rarely produced non-dispersing seeds. Achene’s biomass increased with distance between parent plants, but pappus width did not, leading to a nonsignificant effect of pollination on falling velocity. Overall, pollen source affected mainly traits that were associated with reproductive output, but it had no clear effect on predominately dispersal-related traits. Such differences in the response of reproduction and dispersal traits to variation in pollen source suggest that dispersal-related selection is probably weak and/or masked by other forces.


Biologia ◽  
2008 ◽  
Vol 63 (2) ◽  
Author(s):  
Iva Němečková ◽  
Vojtěch Mrlík ◽  
Pavel Drozd

AbstractDuring 2002–2005 we analyzed Lack’s Hypothesis about the timing of the breeding of marsh harriers (Circus aeruginosus) in the Poodří to the breeding period and preference of heterogeneous habitat. An analysis of 43 nests revealed quantitative differences. Birds which started breeding earlier, reached significantly higher reproductive success than later breeding birds regardless of nesting habitat (P = 0.003, n nests = 43). Even when the birds invested into their offspring the same way, their breeding success was not always the same. When the females nested in the common reed (Phragmites communis), they reached higher reproductive output than females nesting in cattail (Typha sp.) (P = 0.01, n cattail = 18, n common reed = 25). The habitat of the common reed is characterized by higher and denser vegetation cover than cattail vegetation (P < 0.001, n measurements = 174 for both variables).


2021 ◽  
Author(s):  
◽  
Benjamin Moginie

<p>Identifying sources of variation in individual reproductive success is crucial to our understanding of population dynamics and evolutionary ecology. In many systems, the determinants of success are not well known. Where species have parental care, for example, determinants of success can be particularly challenging to partition between parents and offspring. In this thesis I investigate drivers and consequences of variable life histories, for a small reef fish that exhibits male parental care (the common triplefin Forsterygion lapillum). I examined the influence of individual life history, phenotype and behaviour on (1) the performance of recently settled juveniles, and (2) the reproductive success adult males.  I made field-based observations of adult males during the breeding season, measured their phenotypic traits (body size and condition) and used their otoliths to reconstruct life history characteristics (hatch dates and mean growth rates). My life history trait reconstructions suggested two alternate pathways to ’success’ for adult males. Successful males hatched earlier and therefore had a developmental ’head start’ over less successful males (i.e., males with eggs > male territory holders without eggs > floaters). Alternatively, males can apparently achieve success by growing faster: for males born in the same month, those with eggs grew faster than those with territories and no eggs, and both groups grew faster than floaters. These results suggest that accelerated growth rate may mediate the effects of a later hatch date, and that both hatch dates and growth rates influence the success of adult males, likely through proximate effects on individual phenotypes.  Identifying sources of variation in individual reproductive success is crucial to our understanding of population dynamics and evolutionary ecology. In many systems, the determinants of success are not well known. Where species have parental care, for example, determinants of success can be particularly challenging to partition between parents and offspring. Male parental care is common among fishes, where resources such as high quality territories and mates often may be limiting. In such systems, individual success of offspring may result from distinct life history pathways that are influenced by both parental effects (e.g., timing of reproduction) and by the offspring themselves (e.g., ’personalities’). These pathways, in turn, can induce phenotypic variation and affect success later in life. The drivers and consequences of variable life histories are not well understood in the context of reproductive success.  In this thesis I investigate drivers and consequences of variable life histories, for a small reef fish that exhibits male parental care (the common triplefin Forsterygion lapillum). I examined the influence of individual life history, phenotype and behaviour on (1) the performance of recently settled juveniles, and (2) the reproductive success adult males. I made field-based observations of adult males during the breeding season, measured their phenotypic traits (body size and condition) and used their otoliths to reconstruct life history characteristics (hatch dates and mean growth rates). Some males showed no evidence of territorial defence and were defined as ’floaters’; others defended territories, and a subset of these also had nests with eggs present. Adult male body size was significantly higher for males that defended breeding territories, and body condition was significantly higher for the males that had eggs (i.e., had successfully courted females). My otolith-based reconstructions of life history traits suggested two alternate pathways to ’success’ for adult males. Successful males hatched earlier and therefore had a developmental ’head start’ over less successful males (i.e., males with eggs > male territory holders without eggs > floaters). Alternatively, males can apparently achieve success by growing faster: for males born in the same month, those with eggs grew faster than those with territories and no eggs, and both groups grew faster than floaters. These results suggest that accelerated growth rate may mediate the effects of a later hatch date, and that both hatch dates and growth rates influence the success of adult males, likely through proximate effects on individual phenotypes.  I evaluated the effects of variable life history in a complimentary lab-based study. Specifically, I manipulated the developmental environments (feeding regime and temperature) for young fish and evaluated the direct effects on life history traits and phenotypes. Then, I conducted an assay to quantify the indirect effects of developmental environment, life history traits, and phenotypes on aggression and performance of young fish. These developmental environments did not have a clear, overall effect on juvenile phenotype or performance (i.e. behavioural aggression and the ability to dominate a resource). Instead, individuals (irrespective of developmental environment) that grew faster and/or longer pelagic larval durations had increased odds of dominating a limited resource. I attributed the non-significant direct effect of developmental environment to within-treatment mortality and variation among individuals in terms of their realised access to food (i.e., dominance hierarchies were apparent in rearing chambers, suggesting a non-uniform access to food). Fish that were more likely to dominate a resource were also more aggressive (i.e., more likely to engage in chasing behaviours). Fish that were larger and more aggressive established territories that were deemed to be of higher ’quality’ (inferred from percent cover of cobble resources). Overall, this study suggests a complex interplay between social systems, phenotype and life history. Developmental environments may influence phenotypes, although behavioural differences among individuals may moderate that effect, contributing to additional variation in phenotypes and life history traits which, in turn, shape the success of individuals.  Collectively, my thesis emphasises the consequences of life history variability on success at multiple life stages. These results may be relevant to other species that exhibit male parental care or undergo intense competition for space during early life stages. In addition, my results highlight interactions between life history, phenotype and behaviour that can have important implications for population dynamics and evolutionary ecology.</p>


Waterbirds ◽  
2014 ◽  
Vol 37 (4) ◽  
pp. 371-380 ◽  
Author(s):  
Lianne M. Koczur ◽  
Alexandra E. Munters ◽  
Susan A. Heath ◽  
Bart M. Ballard ◽  
M. Clay Green ◽  
...  

Reproduction ◽  
2009 ◽  
Vol 137 (6) ◽  
pp. 931-942 ◽  
Author(s):  
Zuzanna Maciejewska ◽  
Zbigniew Polanski ◽  
Katarzyna Kisiel ◽  
Jacek Z Kubiak ◽  
Maria A Ciemerych

The phenotype of the LT/Sv strain of mice is manifested by abnormalities in oocyte meiotic cell-cycle, spontaneous parthenogenetic activation, teratomas formation, and frequent occurrence of embryonic triploidy. These abnormalities lead to the low rate of reproductive success. Recently, metaphase I arrest of LT/Sv oocytes has been attributed to the inability to timely inactivate the spindle assembly checkpoint (SAC). As differences in meiotic and mitotic SAC functioning were described, it remains obscure whether this abnormality is limited to the meiosis or also impinges on the mitotic divisions of LT/Sv embryos. Here, we show that a failure to inactivate SAC affects mitoses during preimplantation development of LT/Sv embryos. This is manifested by the prolonged localization of MAD2L1 on kinetochores of mitotic chromosomes and abnormally lengthened early embryonic M-phases. Moreover, LT/Sv embryos exhibit elevated frequency of abnormal chromosome separation during the first mitotic division. These abnormalities participate in severe impairment of preimplantation development and significantly decrease the reproductive success of this strain of mice. Thus, the common meiosis and mitosis SAC-related failure participates in a complex LT/Sv phenotype.


2006 ◽  
Vol 274 (1608) ◽  
pp. 425-430 ◽  
Author(s):  
Christophe Eizaguirre ◽  
David Laloi ◽  
Manuel Massot ◽  
Murielle Richard ◽  
Pierre Federici ◽  
...  

Species in which males do not contribute to reproduction beyond the provision of sperm offer good opportunities to study the potential genetic benefits that females can obtain from polyandry. Here, we report the results of a study examining the relationships between polyandry and components of female fitness in the common lizard ( Lacerta vivipara ). We found that polyandrous females produce larger clutches than monandrous females. Polyandrous females also lose fewer offspring during the later stages of gestation and at birth, but we did not find any relationship between polyandry and physical characteristics of viable neonates. Our results were consistent with the predictions of the intrinsic male quality hypothesis, while inbreeding avoidance and genetic incompatibility avoidance might also explain some part of the variation observed in clutch size. Moreover, the benefits of polyandry appeared to depend on female characteristics, as revealed by an interaction between reproductive strategy and female length on reproductive success. Thus, all females did not benefit equally from mating with multiple males, which could explain why polyandry and monandry coexist.


2021 ◽  
Author(s):  
◽  
McKenzie Grace Tornquist

<p>Identifying sources of individual variation in reproductive success has been a longstanding challenge for evolutionary ecologists. Reproductive success among individuals can be due to several factors such as competition between conspecifics for nest sites and mating partners, mate choice, or by the physical environment. Reproductive success, particularly among males, can be extremely diverse both within and between species and determining which components contribute to success can be particularly challenging. In this thesis, I investigated patterns and drivers of reproductive success in a temperate marine reef fish, Forsterygion lapillum (the common triplefin). Specifically, I examined how male quality, nest quality, and female choice influence male reproductive success. Additionally, I quantified male reproductive success during the winter and summer of the breeding season to examine the temporal dynamics of breeding success in F. lapillum.   Selection of mates by females can be driven by the quality and behavioural attributes of the male or by the quality of resources offered. In Chapter 2, using field-based observations, combined with a lab-based study, I evaluated the effects of different male traits and nest characteristics on female choice and male reproductive success. Specifically, I observed egg guarding males in the field during the breeding season and recorded their phenotypic traits, behaviours, and nest characteristics. I then examined their influence on 3 different components of male reproductive success (brood size, individual egg size, and mate attraction). Additionally, I conducted dichotomous choice tests in the laboratory to evaluate female preference for different sized males, holding different sized nests. In the field, I did not detect a significant relationship between male mating success and male total length or nest size. Brood size and individual egg size were highly variable among sampled males, however, further factors such as courtship frequency, and the number of interactions with potential predators did not explain any additional variation. The number of agonistic displays performed by egg guarding males was the only factor to influence egg size, however, it had no direct impact on brood size or mate attraction. On the contrary, results from the laboratory experiment suggested that male total length and nest size were important during female choice. Females were attracted to and spawned more frequently with larger males holding larger nests. Additionally, females showed a particular preference towards males that displayed intense courtship behaviours. These results suggest that variation in reproductive success among individuals is not random in the common triplefin (F. lapillum) and may be due to a range of complex factors.  In natural systems, individual variation in mating success is known to be highly dynamic and vary over time. In Chapter 3, I addressed 3 questions related to reproductive success in male common triplefin: 1) Does the operational sex ratio (OSR) and the density of individuals change predictably within the breeding season? 2) Does male reproductive success change within the breeding season? And 3) Does the age and growth rate of successful males change within the breeding season? To address these questions, I sampled a population of F. lapillum during two periods of the breeding season and quantified a set of morphological and physical traits. Furthermore, I reconstructed individual life histories from the otoliths of egg guarding males. My results show that the density of individuals in the population increased during the summer months, but the operational sex ratio (OSR) remained male-biased. Male reproductive success in terms of brood size and average egg size did not fluctuate during the sampling period. However, the size of males and the size of the nest (cobblestone) held by males was significantly larger in summer compared to winter. Interestingly, successful males sampled in the winter had hatched significantly earlier than successful males sampled in the summer, but their average growth rate remained similar. These findings indicate that variation in male traits across the breeding season plays an important role in female mate choice. The mating system and pool of mating individuals in the common triplefin (F. lapillum) is highly dynamic over the year and has the potential to shape the success of individuals.   Overall, this study emphasizes the importance of considering multiple cues and temporal dynamics when disentangling the determinants of individual reproductive success. These findings suggest that male-male competition and female mate choice have a significant influence on male reproductive success. The reproductive ecology of F. lapillum is highly complex and my research has provided valuable insight into its dynamic nature. These results may apply to other species with male parental care and provides an important contribution towards understanding sexual selection and the evolution of mating systems with male parental care.</p>


Sign in / Sign up

Export Citation Format

Share Document