scholarly journals Going all the way: The implications of life history and phenotype on reproductive success of the common triplefin, Forsterygion lapillum

2021 ◽  
Author(s):  
◽  
Benjamin Moginie

<p>Identifying sources of variation in individual reproductive success is crucial to our understanding of population dynamics and evolutionary ecology. In many systems, the determinants of success are not well known. Where species have parental care, for example, determinants of success can be particularly challenging to partition between parents and offspring. In this thesis I investigate drivers and consequences of variable life histories, for a small reef fish that exhibits male parental care (the common triplefin Forsterygion lapillum). I examined the influence of individual life history, phenotype and behaviour on (1) the performance of recently settled juveniles, and (2) the reproductive success adult males.  I made field-based observations of adult males during the breeding season, measured their phenotypic traits (body size and condition) and used their otoliths to reconstruct life history characteristics (hatch dates and mean growth rates). My life history trait reconstructions suggested two alternate pathways to ’success’ for adult males. Successful males hatched earlier and therefore had a developmental ’head start’ over less successful males (i.e., males with eggs > male territory holders without eggs > floaters). Alternatively, males can apparently achieve success by growing faster: for males born in the same month, those with eggs grew faster than those with territories and no eggs, and both groups grew faster than floaters. These results suggest that accelerated growth rate may mediate the effects of a later hatch date, and that both hatch dates and growth rates influence the success of adult males, likely through proximate effects on individual phenotypes.  Identifying sources of variation in individual reproductive success is crucial to our understanding of population dynamics and evolutionary ecology. In many systems, the determinants of success are not well known. Where species have parental care, for example, determinants of success can be particularly challenging to partition between parents and offspring. Male parental care is common among fishes, where resources such as high quality territories and mates often may be limiting. In such systems, individual success of offspring may result from distinct life history pathways that are influenced by both parental effects (e.g., timing of reproduction) and by the offspring themselves (e.g., ’personalities’). These pathways, in turn, can induce phenotypic variation and affect success later in life. The drivers and consequences of variable life histories are not well understood in the context of reproductive success.  In this thesis I investigate drivers and consequences of variable life histories, for a small reef fish that exhibits male parental care (the common triplefin Forsterygion lapillum). I examined the influence of individual life history, phenotype and behaviour on (1) the performance of recently settled juveniles, and (2) the reproductive success adult males. I made field-based observations of adult males during the breeding season, measured their phenotypic traits (body size and condition) and used their otoliths to reconstruct life history characteristics (hatch dates and mean growth rates). Some males showed no evidence of territorial defence and were defined as ’floaters’; others defended territories, and a subset of these also had nests with eggs present. Adult male body size was significantly higher for males that defended breeding territories, and body condition was significantly higher for the males that had eggs (i.e., had successfully courted females). My otolith-based reconstructions of life history traits suggested two alternate pathways to ’success’ for adult males. Successful males hatched earlier and therefore had a developmental ’head start’ over less successful males (i.e., males with eggs > male territory holders without eggs > floaters). Alternatively, males can apparently achieve success by growing faster: for males born in the same month, those with eggs grew faster than those with territories and no eggs, and both groups grew faster than floaters. These results suggest that accelerated growth rate may mediate the effects of a later hatch date, and that both hatch dates and growth rates influence the success of adult males, likely through proximate effects on individual phenotypes.  I evaluated the effects of variable life history in a complimentary lab-based study. Specifically, I manipulated the developmental environments (feeding regime and temperature) for young fish and evaluated the direct effects on life history traits and phenotypes. Then, I conducted an assay to quantify the indirect effects of developmental environment, life history traits, and phenotypes on aggression and performance of young fish. These developmental environments did not have a clear, overall effect on juvenile phenotype or performance (i.e. behavioural aggression and the ability to dominate a resource). Instead, individuals (irrespective of developmental environment) that grew faster and/or longer pelagic larval durations had increased odds of dominating a limited resource. I attributed the non-significant direct effect of developmental environment to within-treatment mortality and variation among individuals in terms of their realised access to food (i.e., dominance hierarchies were apparent in rearing chambers, suggesting a non-uniform access to food). Fish that were more likely to dominate a resource were also more aggressive (i.e., more likely to engage in chasing behaviours). Fish that were larger and more aggressive established territories that were deemed to be of higher ’quality’ (inferred from percent cover of cobble resources). Overall, this study suggests a complex interplay between social systems, phenotype and life history. Developmental environments may influence phenotypes, although behavioural differences among individuals may moderate that effect, contributing to additional variation in phenotypes and life history traits which, in turn, shape the success of individuals.  Collectively, my thesis emphasises the consequences of life history variability on success at multiple life stages. These results may be relevant to other species that exhibit male parental care or undergo intense competition for space during early life stages. In addition, my results highlight interactions between life history, phenotype and behaviour that can have important implications for population dynamics and evolutionary ecology.</p>

2021 ◽  
Author(s):  
◽  
Benjamin Moginie

<p>Identifying sources of variation in individual reproductive success is crucial to our understanding of population dynamics and evolutionary ecology. In many systems, the determinants of success are not well known. Where species have parental care, for example, determinants of success can be particularly challenging to partition between parents and offspring. In this thesis I investigate drivers and consequences of variable life histories, for a small reef fish that exhibits male parental care (the common triplefin Forsterygion lapillum). I examined the influence of individual life history, phenotype and behaviour on (1) the performance of recently settled juveniles, and (2) the reproductive success adult males.  I made field-based observations of adult males during the breeding season, measured their phenotypic traits (body size and condition) and used their otoliths to reconstruct life history characteristics (hatch dates and mean growth rates). My life history trait reconstructions suggested two alternate pathways to ’success’ for adult males. Successful males hatched earlier and therefore had a developmental ’head start’ over less successful males (i.e., males with eggs > male territory holders without eggs > floaters). Alternatively, males can apparently achieve success by growing faster: for males born in the same month, those with eggs grew faster than those with territories and no eggs, and both groups grew faster than floaters. These results suggest that accelerated growth rate may mediate the effects of a later hatch date, and that both hatch dates and growth rates influence the success of adult males, likely through proximate effects on individual phenotypes.  Identifying sources of variation in individual reproductive success is crucial to our understanding of population dynamics and evolutionary ecology. In many systems, the determinants of success are not well known. Where species have parental care, for example, determinants of success can be particularly challenging to partition between parents and offspring. Male parental care is common among fishes, where resources such as high quality territories and mates often may be limiting. In such systems, individual success of offspring may result from distinct life history pathways that are influenced by both parental effects (e.g., timing of reproduction) and by the offspring themselves (e.g., ’personalities’). These pathways, in turn, can induce phenotypic variation and affect success later in life. The drivers and consequences of variable life histories are not well understood in the context of reproductive success.  In this thesis I investigate drivers and consequences of variable life histories, for a small reef fish that exhibits male parental care (the common triplefin Forsterygion lapillum). I examined the influence of individual life history, phenotype and behaviour on (1) the performance of recently settled juveniles, and (2) the reproductive success adult males. I made field-based observations of adult males during the breeding season, measured their phenotypic traits (body size and condition) and used their otoliths to reconstruct life history characteristics (hatch dates and mean growth rates). Some males showed no evidence of territorial defence and were defined as ’floaters’; others defended territories, and a subset of these also had nests with eggs present. Adult male body size was significantly higher for males that defended breeding territories, and body condition was significantly higher for the males that had eggs (i.e., had successfully courted females). My otolith-based reconstructions of life history traits suggested two alternate pathways to ’success’ for adult males. Successful males hatched earlier and therefore had a developmental ’head start’ over less successful males (i.e., males with eggs > male territory holders without eggs > floaters). Alternatively, males can apparently achieve success by growing faster: for males born in the same month, those with eggs grew faster than those with territories and no eggs, and both groups grew faster than floaters. These results suggest that accelerated growth rate may mediate the effects of a later hatch date, and that both hatch dates and growth rates influence the success of adult males, likely through proximate effects on individual phenotypes.  I evaluated the effects of variable life history in a complimentary lab-based study. Specifically, I manipulated the developmental environments (feeding regime and temperature) for young fish and evaluated the direct effects on life history traits and phenotypes. Then, I conducted an assay to quantify the indirect effects of developmental environment, life history traits, and phenotypes on aggression and performance of young fish. These developmental environments did not have a clear, overall effect on juvenile phenotype or performance (i.e. behavioural aggression and the ability to dominate a resource). Instead, individuals (irrespective of developmental environment) that grew faster and/or longer pelagic larval durations had increased odds of dominating a limited resource. I attributed the non-significant direct effect of developmental environment to within-treatment mortality and variation among individuals in terms of their realised access to food (i.e., dominance hierarchies were apparent in rearing chambers, suggesting a non-uniform access to food). Fish that were more likely to dominate a resource were also more aggressive (i.e., more likely to engage in chasing behaviours). Fish that were larger and more aggressive established territories that were deemed to be of higher ’quality’ (inferred from percent cover of cobble resources). Overall, this study suggests a complex interplay between social systems, phenotype and life history. Developmental environments may influence phenotypes, although behavioural differences among individuals may moderate that effect, contributing to additional variation in phenotypes and life history traits which, in turn, shape the success of individuals.  Collectively, my thesis emphasises the consequences of life history variability on success at multiple life stages. These results may be relevant to other species that exhibit male parental care or undergo intense competition for space during early life stages. In addition, my results highlight interactions between life history, phenotype and behaviour that can have important implications for population dynamics and evolutionary ecology.</p>


2014 ◽  
Vol 71 (8) ◽  
pp. 1198-1208 ◽  
Author(s):  
Douglas C. Braun ◽  
John D. Reynolds

Understanding linkages among life history traits, the environment, and population dynamics is a central goal in ecology. We compared 15 populations of sockeye salmon (Oncorhynchus nerka) to test general hypotheses for the relative importance of life history traits and environmental conditions in explaining variation in population dynamics. We used life history traits and habitat variables as covariates in mixed-effect Ricker models to evaluate the support for correlates of maximum population growth rates, density dependence, and variability in dynamics among populations. We found dramatic differences in the dynamics of populations that spawn in a small geographical area. These differences among populations were related to variation in habitats but not life history traits. Populations that spawned in deep water had higher and less variable population growth rates, and populations inhabiting streams with larger gravels experienced stronger negative density dependence. These results demonstrate, in these populations, the relative importance of environmental conditions and life histories in explaining population dynamics, which is rarely possible for multiple populations of the same species. Furthermore, they suggest that local habitat variables are important for the assessment of population status, especially when multiple populations with different dynamics are managed as aggregates.


The Condor ◽  
2000 ◽  
Vol 102 (1) ◽  
pp. 9-22 ◽  
Author(s):  
Robert E. Ricklefs

Abstract Although we have learned much about avian life histories during the 50 years since the seminal publications of David Lack, Alexander Skutch, and Reginald Moreau, we still do not have adequate explanations for some of the basic patterns of variation in life-history traits among birds. In part, this reflects two consequences of the predominance of evolutionary ecology thinking during the past three decades. First, by blurring the distinction between life-history traits and life-table variables, we have tended to divorce life histories from their environmental context, which forms the link between the life history and the life table. Second, by emphasizing constrained evolutionary responses to selective factors, we have set aside alternative explanations for observed correlations among life-history traits and life-table variables. Density-dependent feedback and independent evolutionary response to correlated aspects of the environment also may link traits through different mechanisms. Additionally, in some cases we have failed to evaluate quantitatively ideas that are compelling qualitatively, ignored or explained away relevant empirical data, and neglected logical implications of certain compelling ideas. Comparative analysis of avian life histories shows that species are distributed along a dominant slow-fast axis. Furthermore, among birds, annual reproductive rate and adult mortality are directly proportional to each other, requiring that pre-reproductive survival is approximately constant. This further implies that age at maturity increases dramatically with increasing adult survival rate. The significance of these correlations is obscure, particularly because survival and reproductive rates at each age include the effects of many life-history traits. For example, reproductive rate is determined by clutch size, nesting success, season length, and nest-cycle length, each of which represents the outcome of many different interactions of an individual's life-history traits with its environment. Resolution of the most basic issues raised by patterns of life histories clearly will require innovative empirical, modeling, and experimental approaches. However, the most fundamental change required at this time is a broadening of the evolutionary ecology paradigm to include a variety of alternative mechanisms for generating patterns of life-history variation.


Parasitology ◽  
1998 ◽  
Vol 116 (S1) ◽  
pp. S47-S55 ◽  
Author(s):  
J. C. Koella ◽  
P. Agnew ◽  
Y. Michalakis

SummarySeveral recent studies have discussed the interaction of host life-history traits and parasite life cycles. It has been observed that the life-history of a host often changes after infection by a parasite. In some cases, changes of host life-history traits reduce the costs of parasitism and can be interpreted as a form of resistance against the parasite. In other cases, changes of host life-history traits increase the parasite's transmission and can be interpreted as manipulation by the parasite. Alternatively, changes of host's life-history traits can also induce responses in the parasite's life cycle traits. After a brief review of recent studies, we treat in more detail the interaction between the microsporidian parasite Edhazardia aedis and its host, the mosquito Aedes aegypti. We consider the interactions between the host's life-history and parasite's life cycle that help shape the evolutionary ecology of their relationship. In particular, these interactions determine whether the parasite is benign and transmits vertically or is virulent and transmits horizontally.Key words: host-parasite interaction, life-history, life cycle, coevolution.


Author(s):  
Maren N. Vitousek ◽  
Laura A. Schoenle

Hormones mediate the expression of life history traits—phenotypic traits that contribute to lifetime fitness (i.e., reproductive timing, growth rate, number and size of offspring). The endocrine system shapes phenotype by organizing tissues during developmental periods and by activating changes in behavior, physiology, and morphology in response to varying physical and social environments. Because hormones can simultaneously regulate many traits (hormonal pleiotropy), they are important mediators of life history trade-offs among growth, reproduction, and survival. This chapter reviews the role of hormones in shaping life histories with an emphasis on developmental plasticity and reversible flexibility in endocrine and life history traits. It also discusses the advantages of studying hormone–behavior interactions from an evolutionary perspective. Recent research in evolutionary endocrinology has provided insight into the heritability of endocrine traits, how selection on hormone systems may influence the evolution of life histories, and the role of hormonal pleiotropy in driving or constraining evolution.


Author(s):  
Jeffrey A. Hutchings

Life histories describe how genotypes schedule their reproductive effort throughout life in response to factors that affect their survival and fecundity. Life histories are solutions that selection has produced to solve the problem of how to persist in a given environment. These solutions differ tremendously within and among species. Some organisms mature within months of attaining life, others within decades; some produce few, large offspring as opposed to numerous, small offspring; some reproduce many times throughout their lives while others die after reproducing just once. The exponential pace of life-history research provides an opportune time to engage and re-engage new generations of students and researchers on the fundamentals and applications of life-history theory. Chapters 1 through 4 describe the fundamentals of life-history theory. Chapters 5 through 8 focus on the evolution of life-history traits. Chapters 9 and 10 summarize how life-history theory and prediction has been applied within the contexts of conservation and sustainable exploitation. This primer offers an effective means of rendering the topic accessible to readers from a broad range of academic experience and research expertise.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2640 ◽  
Author(s):  
Ramiro J.A. Ovejero Aguilar ◽  
Graciela A. Jahn ◽  
Mauricio Soto-Gamboa ◽  
Andrés J. Novaro ◽  
Pablo Carmanchahi

BackgroundProviding the context for the evolution of life-history traits, habitat features constrain successful ecological and physiological strategies. In vertebrates, a key response to life’s challenges is the activation of the Stress (HPA) and Gonadal (HPG) axes. Much of the interest in stress ecology is motivated by the desire to understand the physiological mechanisms in which the environment affects fitness. As reported in the literature, several intrinsic and extrinsic factors affect variability in hormone levels. In both social and non-social animals, the frequency and type of interaction with conspecifics, as well as the status in social species, can affect HPA axis activity, resulting in changes in the reproductive success of animals. We predicted that a social environment can affect both guanaco axes by increasing the secretion of testosterone (T) and Glucocorticoid (GCs) in response to individual social interactions and the energetic demands of breeding. Assuming that prolonged elevated levels of GCs over time can be harmful to individuals, it is predicted that the HPA axis suppresses the HPG axis and causes T levels to decrease, as GCs increase.MethodsAll of the data for individuals were collected by non-invasive methods (fecal samples) to address hormonal activities. This is a novel approach in physiological ecology because feces are easily obtained through non-invasive sampling in animal populations.ResultsAs expected, there was a marked adrenal (p-value = .3.4e−12) and gonadal (p-value = 0.002656) response due to seasonal variation inLama guanicoe. No significant differences were found in fecal GCs metabolites between males/females*season for the entire study period (p-value = 0.2839). Despite the seasonal activity variation in the hormonal profiles, our results show a positive correlation (p-value = 1.952e−11, COR = 0.50) between the adrenal and gonadal system. The marked endocrine (r2 = 0.806) and gonad (r2 = 0.7231) response due to seasonal variation in male guanaco individuals highlights the individual’s energetic demands according to life-history strategies. This is a remarkable result because no inhibition was found between the axes as theory suggests. Finally, the dataset was used to build a reactive scope model for guanacos.DiscussionGuanacos cope with the trade-off between sociability and reproductive benefits and costs, by regulating their GCs and T levels on a seasonal basis, suggesting an adaptive role of both axes to different habitat pressures. The results presented here highlight the functional role of stress and gonad axes on a critical phase of a male mammal’s life—the mating period—when all of the resources are at the disposal of the male and must be used to maximize the chances for reproductive success.


2016 ◽  
Vol 12 (6) ◽  
pp. 20160101 ◽  
Author(s):  
Alexis Rutschmann ◽  
Donald B. Miles ◽  
Jean Clobert ◽  
Murielle Richard

Life-history traits involved in trade-offs are known to vary with environmental conditions. Here, we evaluate the response of the trade-off between ‘offspring number’ versus ‘energy invested per offspring’ to ambient temperature in 11 natural populations of the common lizard, Zootoca vivipara . We provide evidence at both the intra- and interpopulation levels that the trade-off is reduced with an increase in air temperature. If this effect enhances current individual fitness, it may lead to an accelerated pace of life in warmer environments and could ultimately increase adult mortality. In the context of global warming, our results advocate the need for more studies in natural populations to explore interactions between life-history traits' trade-offs and environmental conditions.


2019 ◽  
Vol 81 (11) ◽  
pp. 4701-4725 ◽  
Author(s):  
Simran Kaur Sandhu ◽  
Andrew Morozov ◽  
Oleg Kuzenkov

AbstractModelling the evolution of complex life history traits and behavioural patterns observed in the natural world is a challenging task. Here, we develop a novel computational method to obtain evolutionarily optimal life history traits/behavioural patterns in population models with a strong inheritance. The new method is based on the reconstruction of evolutionary fitness using underlying equations for population dynamics and it can be applied to self-reproducing systems (including complicated age-structured models), where fitness does not depend on initial conditions, however, it can be extended to some frequency-dependent cases. The technique provides us with a tool to efficiently explore both scalar-valued and function-valued traits with any required accuracy. Moreover, the method can be implemented even in the case where we ignore the underlying model equations and only have population dynamics time series. As a meaningful ecological case study, we explore optimal strategies of diel vertical migration (DVM) of herbivorous zooplankton in the vertical water column which is a widespread phenomenon in both oceans and lakes, generally considered to be the largest synchronised movement of biomass on Earth. We reveal optimal trajectories of daily vertical motion of zooplankton grazers in the water column depending on the presence of food and predators. Unlike previous studies, we explore both scenarios of DVM with static and dynamic predators. We find that the optimal pattern of DVM drastically changes in the presence of dynamic predation. Namely, with an increase in the amount of food available for zooplankton grazers, the amplitude of DVM progressively increases, whereas for static predators DVM would abruptly cease.


Sign in / Sign up

Export Citation Format

Share Document