scholarly journals Experimental and numerical study on the interactions between high velocity long-rods and steel-elastomer bulging armor

2021 ◽  
Vol 15 (2) ◽  
pp. 185-210
2014 ◽  
Vol 629 ◽  
pp. 498-502 ◽  
Author(s):  
K.A. Kamarudin ◽  
Al Emran Ismail

This paper explains the utilisation of finite element model to analyse the ballistic limit of aluminium alloy 7075-T6 impacted by 8.33 g with 12.5 mm radius rigid spherical projectiles. This numerical study was compared with the results obtained experimentally. During impact, the targets were subjected to either non- or uniaxial- pretension and the projectile travelled horizontally to the target. It was observed that pretensioned targets were more vulnerable, which reduced the ballistic limit. The existence of harmful failures owing to pretension impact was ascertained and compared with the non-pretension targets.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2913
Author(s):  
Romuald Petkevič ◽  
Giedrius Jočbalis ◽  
Ada Steponavičiūtė ◽  
Karolis Stravinskas ◽  
Aleksej Romanov ◽  
...  

Metal additive manufacturing has received much attention in the past few decades, and it offers a variety of technologies for three-dimensional object production. One of such technologies, allowing large-sized object production, is laser-assisted metal deposition, the limits of which are determined by the capabilities of the positioning system. The already-existing nozzles have either a relatively low build rate or a poor resolution. The goal of this work is to develop a new nozzle with a centered particle beam at high velocity for the laser-assisted metal additive manufacturing technologies. Scientific challenges are addressed with regards to the fluid dynamics, the particle-substrate contact, and tracking of the thermodynamic state during contact. In this paper, two nozzles based on the de Laval geometry with Witoszynski and Bicubic curves of convergence zone were designed; the results showed that the average flow velocity in a Bicubic outlet curve nozzle is around 615 m/s and in Witoszynski this is 435 m/s. Investigation of particle beam formation for the Bicubic curve geometry revealed that small particles have the highest velocity and the lowest total force at the nozzle outlet. Fine particles have a shorter response time, and therefore, a smaller dispersion area. The elasto-plastic particle-surface contact showed that particles of diameter limited up to 3 μm are able to reach experimentally obtained critical velocity without additional heating. For particle sizes above 10 μm, additional heating is needed for deposition. The maximum coefficient of restitution (COR) is achieved with a particle size of 30 μm; smaller particles are characterized by the values of COR, which are lower due to a relatively high velocity. Particles larger than 30 μm are scalable, characterized by a small change in velocity and a rise in temperature as their mass increases.


2016 ◽  
Vol 17 (6) ◽  
pp. 443-453 ◽  
Author(s):  
Zhen-yu Wang ◽  
Yang Zhao ◽  
Guo-wei Ma ◽  
Zhi-guo He

Author(s):  
Ruochen Liu ◽  
Enke An ◽  
Kun Wu

For achieving efficient oxy-coal combustion in a MILD (Moderate or Intense Low Oxygen Dilution) state, the optimum operating conditions with high-velocity jets in a lab-scale cylindrical furnace (Φ200mm×2000mm) was determined. The mesoscopic characteristics of turbulent and flame behavior under different jet design and jet spacing were simulated and compared. The results show that L=30∼60mm(O2 side) and L=60mm(O2 center) conditions are recommended as oxy-coal MILD combustion as well as IFRF furnace condition, the flame front locates in distributed regime, the global regime was depict as 1 < l/lF < 4, 60 < ReT < 150 and 50 < Ka < 500 ; for flaming conditions, the flame front locates in small-scale turbulent regime or thin reaction zone, the global regime was depicted as 0.5 < l/lF < 4, 40 < ReT < 110 and 30 < Ka < 900 ; with high-velocity oxygen jet technology, the combustion process is in slow chemistry regime (Da << 1), governed by chemical-kinetic mechanism; large spacing (L=75mm) is not favored for co-flow burners due to poor radial mixing as well as the restriction of wall.


Sign in / Sign up

Export Citation Format

Share Document