scholarly journals Layer-by-layer Thin Films and Microcapsules for Biosensors and Controlled Release

2012 ◽  
Vol 28 (10) ◽  
pp. 929-938 ◽  
Author(s):  
Katsuhiko SATO ◽  
Shigehiro TAKAHASHI ◽  
Jun-ichi ANZAI
2009 ◽  
Vol 333 (1) ◽  
pp. 141-144 ◽  
Author(s):  
Hiroshi Sato ◽  
Yoichi Takano ◽  
Katsuhiko Sato ◽  
Jun-ichi Anzai

2015 ◽  
Vol 125 ◽  
pp. 151-159 ◽  
Author(s):  
Uma M. Bhalerao ◽  
Aditya Kapil Valiveti ◽  
Jyotiranjan Acharya ◽  
Anand K. Halve ◽  
Mahabir Parshad Kaushik

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1631
Author(s):  
Qiang Zhang ◽  
Yohanes Pramudya ◽  
Wolfgang Wenzel ◽  
Christof Wöll

Metal organic frameworks have emerged as an important new class of materials with many applications, such as sensing, gas separation, drug delivery. In many cases, their performance is limited by structural defects, including vacancies and domain boundaries. In the case of MOF thin films, surface roughness can also have a pronounced influence on MOF-based device properties. Presently, there is little systematic knowledge about optimal growth conditions with regard to optimal morphologies for specific applications. In this work, we simulate the layer-by-layer (LbL) growth of the HKUST-1 MOF as a function of temperature and reactant concentration using a coarse-grained model that permits detailed insights into the growth mechanism. This model helps to understand the morphological features of HKUST-1 grown under different conditions and can be used to predict and optimize the temperature for the purpose of controlling the crystal quality and yield. It was found that reactant concentration affects the mass deposition rate, while its effect on the crystallinity of the generated HKUST-1 film is less pronounced. In addition, the effect of temperature on the surface roughness of the film can be divided into three regimes. Temperatures in the range from 10 to 129 °C allow better control of surface roughness and film thickness, while film growth in the range of 129 to 182 °C is characterized by a lower mass deposition rate per cycle and rougher surfaces. Finally, for T larger than 182 °C, the film grows slower, but in a smooth fashion. Furthermore, the potential effect of temperature on the crystallinity of LbL-grown HKUST-1 was quantified. To obtain high crystallinity, the operating temperature should preferably not exceed 57 °C, with an optimum around 28 °C, which agrees with experimental observations.


2020 ◽  
Vol 11 (24) ◽  
pp. 10548-10551
Author(s):  
Aswani Sathish Lathika ◽  
Shammi Rana ◽  
Anupam Prasoon ◽  
Pooja Sindhu ◽  
Debashree Roy ◽  
...  

Soft Matter ◽  
2019 ◽  
Vol 15 (8) ◽  
pp. 1853-1859 ◽  
Author(s):  
Oliver Werzer ◽  
Stephan Tumphart ◽  
Roman Keimel ◽  
Paul Christian ◽  
Anna Maria Coclite

Temperature-controlled release and study on the effects of the drug–polymer interaction and pH.


2014 ◽  
Vol 1060 ◽  
pp. 45-49
Author(s):  
Kamonrak Cheewatanakornkool ◽  
Pornsak Sriamornsak

The main objective of this study was to fabricate biopolymer-based microbeads, providing enteric properties and controlled release of diclofenac sodium, using layer-by-layer technique. The calcium pectinate microbeads have been designed and coated with chitosan and pectin multilayers. Drug release was performed in simulate gastric fluid (pH 1.2) for 2 hours, followed by pH 6.8 buffer for 8 hours. The effects of chitosan concentration, number of layer and drying technique on drug release were investigated. The results showed that the calcium pectinate microbeads could be simply prepared by ionotropic gelation and then coated with chitosan and pectin solutions using layer-by-layer procedure. The diameter of the microbeads ranged from 800 to 1000 μm for air-dried samples and from 1 to 2 mm for freeze-dried samples. The freeze-dried microbeads had a rough surface and many pores inside, as observed by SEM. The microbeads coated with 4% chitosan/4% pectin revealed a slower drug release than those coated with 1% chitosan/4% pectin and demonstrated a controlled release pattern. Moreover, different drying techniques and numbers of layer also influenced drug release behavior of the prepared microbeads.


RSC Advances ◽  
2014 ◽  
Vol 4 (46) ◽  
pp. 24369-24376 ◽  
Author(s):  
Jiemin Zhao ◽  
Xiaoping Wang ◽  
Yanshen Kuang ◽  
Yufeng Zhang ◽  
Xiaowen Shi ◽  
...  

Alginate (ALG)–lysozyme (LZ) beads were fabricated by a cross-linking process. Negatively charged ALG and positively charged LZ were alternately deposited on the positively charged ALG–LZ beads via a layer-by-layer (LBL) self-assembly technique.


2008 ◽  
Vol 3 (2) ◽  
pp. 133-145 ◽  
Author(s):  
Chaoyang Wang ◽  
Shiqu Ye ◽  
Qilong Sun ◽  
Chengyi He ◽  
Weihua Ye ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document