scholarly journals Low-temperature ashing of organic samples containing halogenides by means of carbon dioxide plasma.

1990 ◽  
Vol 39 (3) ◽  
pp. 167-170 ◽  
Author(s):  
Takako MANO ◽  
Satomi NAKAMORI ◽  
Keiichiro HOZUMI
1997 ◽  
Vol 13 (2) ◽  
pp. 151-161 ◽  
Author(s):  
Kevin B. Thurbide ◽  
C. M. Elson ◽  
P. G. Sim

The negative‒ion chemical ionization mass spectra of a group of structural isomers of amphetamine have been studied using carbon dioxide as the reagent gas. Characteristic and reproducible differences are observed for each member of the set implying that this technique offers a means of distinguishing among groups of amphetamine isomers. Characteristic adducts to the molecular ion are observed in the form (M–[H]+[O]) and (M–[H]+[CO2]). Descriptions of some fragments are given based on the mass spectral behaviour of a set of analogue compounds and the results of oxygen-18 labelled carbon dioxide reagent gas experiments. Contents of the carbon dioxide plasma and their impact on various analytes is also discussed.


Geoderma ◽  
2017 ◽  
Vol 288 ◽  
pp. 120-129 ◽  
Author(s):  
Luigi P. D'Acqui ◽  
Alessandra Bonetti ◽  
Roberto Pini ◽  
Giacomo Certini

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2615 ◽  
Author(s):  
Andreas Lorek ◽  
Jacek Majewski

In experimental chambers for simulating the atmospheric near-surface conditions of Mars, or in situ measurements on Mars, the measurement of the humidity in carbon dioxide gas at low temperature and under low pressure is needed. For this purpose, polymer-based capacitive humidity sensors are used; however, these sensors are designed for measuring the humidity in the air on the Earth. The manufacturers provide only the generic calibration equation for standard environmental conditions in air, and temperature corrections of humidity signal. Because of the lack of freely available information regarding the behavior of the sensors in CO2, the range of reliable results is limited. For these reasons, capacitive humidity sensors (Sensirion SHT75) were tested at the German Aerospace Center (DLR) in its Martian Simulation Facility (MSF). The sensors were investigated in cells with a continuously humidified carbon dioxide flow, for temperatures between −70 °C and 10 °C, and pressures between 10 hPa and 1000 hPa. For 28 temperature–pressure combinations, the sensor calibration equations were calculated together with temperature–dependent formulas for the coefficients of the equations. The characteristic curves obtained from the tests in CO2 and in air were compared for selected temperature–pressure combinations. The results document a strong cross-sensitivity of the sensors to CO2 and, compared with air, a strong pressure sensitivity as well. The reason could be an interaction of the molecules of CO2 with the adsorption sites on the thin polymeric sensing layer. In these circumstances, an individual calibration for each pressure with respect to temperature is required. The performed experiments have shown that this kind of sensor can be a suitable, lightweight, and relatively inexpensive choice for applications in harsh environments such as on Mars.


Sign in / Sign up

Export Citation Format

Share Document