The Rules for Achieving High Solubilization of Brine and Oil by Amphiphilic Molecules

1983 ◽  
Vol 23 (02) ◽  
pp. 327-338 ◽  
Author(s):  
M. Bourrel ◽  
C. Chambu

Abstract The oil-recovery effectiveness of a chemical flood has been proved related to the phase behavior of the brine/oil/surfactant system. In particular, it is advantageous to formulate the system so that optimal threephase behavior is obtained. However, it also has been demonstrated that all the optimized systems are not equivalent in terms of solubilization. interfacial tensions (IFT's), and oil-recovery efficiency. This paper addresses the conditions that promote high solubilization in microemulsions, a property correlated to the values of the IFT and therefore correlated to the ability of such systems to displace the oil in porous media. When one formulation parameter is changed, another parameter must be varied at the same time for compensation to reoptimize the system. The mechanism of solubilization is investigated experimentally by considering the usual formulation parameters: salinity, oil type, alcohol type and concentration, and surfactant structure and type (anionics and nonionics). The results are interpreted in terms of interaction energies between surfactant, oil, and water. In particular, the role of the alcohol and its impact on the solubilization by amphiphilic systems are discussed in detail and interpreted. Moreover, the concepts developed in this paper explain the effect of the surfactant structure and therefore aid in the design of amphiphilic molecules exhibiting a high solubilizing power for given conditions of brine, temperature, etc. Introduction Mobilization and transport of residual oil by chemical-flooding processes involve various mechanisms that must be considered when formulating a surfactant slug, but, among them, it is well known that IFT's between phases play a major role. Reed and Healy have shown phases play a major role. Reed and Healy have shown that ultralow IFT's can be attained when a microemulsion phase (surfactant-rich phase, the so-called "middle phase (surfactant-rich phase, the so-called "middle phase") is in equilibrium simultaneously with an oil phase") is in equilibrium simultaneously with an oil phase and a water phase. They first have defined the phase and a water phase. They first have defined the concept of optimal salinity as being the point where the IFT's at the oil-middle phase and middle phase/water interfaces are equal. At that point, the volumes of oil and water solubilized in the middle phase generally are identical, although there is no theoretical basis for that. A correlation between the values of the quantities of oil and water solubilized in the middle phase and the values of the IFT's between the phases also has been found: the lower the tension, the higher the solubilization. Therefore, it appears judicious to start the screening procedure of surfactant systems for enhanced oil procedure of surfactant systems for enhanced oil recovery (EOR) by looking for the point where equal volumes of oil and water are solubilized in the surfactant phase of a three-phase system. During recent years, phase of a three-phase system. During recent years, much time has been devoted to discovering that point, and the rules for compensating changes in the formulation variables have been established for anionic and non-ionic surfactants. We must emphasize that, if we start from an optimized system and we change a formulation variable defining the system, the optimal state is lost, and another formulation variable must be changed to reach a new optimal state. All optimized systems are not equivalent, as shown in previous results, and consideration of the amount of previous results, and consideration of the amount of oil and water solubilized in such systems provides a criterion to compare them. In a previous paper, we carried out a systematic study of the effect of the formulation variables on the solubilization at optimum by anionic surfactants. Some results concerning nonionics have been presented recently presented recently. SPEJ p. 327

1979 ◽  
Vol 19 (05) ◽  
pp. 271-278 ◽  
Author(s):  
J.L. Salager ◽  
M. Bourrel ◽  
R.S. Schechter ◽  
W.H. Wade

Abstract Many formulations used in surfactant flooding involve blends of surfactants designed to glue the best oil-recovery efficiency. Because oil-recovery efficiency usually is presumed to relate closely to surfactant/brine/oil phase behavior, it is of interest to understand the effect of mixing surfactants or of mixing oils on this phase behavior.We show that a correlation defining optimal behavior as a function of salinity, alcohol type and concentration, temperature, WOR (water/oil ratio), and oil type can be extended to mixtures of sulfonated surfactants and to those of sulfonates with sulfates and of sulfonates with alkanoates, provided the proper mixing rules are observed. provided the proper mixing rules are observed. The mixing rules apply to some mixtures of anionic and nonionic surfactants, but not to all. These mixtures exhibit some properties that may be of practical interest, such as increased salinity and practical interest, such as increased salinity and temperature tolerance. Introduction Recent studies have shown that formulation of the surfactant/brine/oil system is a key factor governing the performance of microemulsions designed to recover residual oil. These studies demonstrate that all optimal formulations exhibit characteristic properties that are remarkably similar. In general, properties that are remarkably similar. In general, the optimal microemulsion can solubilize large quantities of oil and connate water; in the presence of excess quantities of oil and water, a third surfactant-rich middle phase is formed. The interfacial tensions (IFT's) between the excess phases and the surfactant-rich phase are both low - about 10 dyne/cm (10 mN/m). Given an oil/brine system from a particular reservoir, one can achieve this formulation by varying the surfactant or the cosurfactant. Different oils, brines, or temperatures require formulations correspondingly altered to maintain optimal conditions. Previous studies have shown that the three-phase region exists over a range of values when one parameter, such as cosurfactant concentration, parameter, such as cosurfactant concentration, salinity, temperature, etc., is varied systematically (often called a scan). Thus, some ambiguity may exist with regard to the selection of those parameters representing the optimal formulation. Clearly, the optimum is that which recovers the most oil. However, tests are laborious, difficult to reproduce precisely, and sensitive to other factors, such as precisely, and sensitive to other factors, such as mobility, surfactant retention, wettability, etc. Therefore, it is desirable to impose an alternative definition that can be used for screening, though the final design still is dictated by core floods.Healy and Reeds have shown that the optimal formulation for oil recovery closely corresponds to that for which the IFT's between the excess oil and water phases and the surfactant-rich phase are equal. An almost equivalent criterion also was shown to be that point in the three-phase region for which the volume of oil solubilized into the middle phase equals the volume of brine. Furthermore, Salager et al. have used still another criterion that seems to be essentially equivalent to those used by Healy and Reed - an optimal salinity is defined as the midpoint of the salinity range for which the system exhibits three phases.These criteria are useful because they permit the screening of microemulsion systems using simple laboratory tests. SPEJ P. 271


1984 ◽  
Vol 24 (06) ◽  
pp. 606-616 ◽  
Author(s):  
Charles P. Thomas ◽  
Paul D. Fleming ◽  
William K. Winter

Abstract A mathematical model describing one-dimensional (1D), isothermal flow of a ternary, two-phase surfactant system in isotropic porous media is presented along with numerical solutions of special cases. These solutions exhibit oil recovery profiles similar to those observed in laboratory tests of oil displacement by surfactant systems in cores. The model includes the effects of surfactant transfer between aqueous and hydrocarbon phases and both reversible and irreversible surfactant adsorption by the porous medium. The effects of capillary pressure and diffusion are ignored, however. The model is based on relative permeability concepts and employs a family of relative permeability curves that incorporate the effects of surfactant concentration on interfacial tension (IFT), the viscosity of the phases, and the volumetric flow rate. A numerical procedure was developed that results in two finite difference equations that are accurate to second order in the timestep size and first order in the spacestep size and allows explicit calculation of phase saturations and surfactant concentrations as a function of space and time variables. Numerical dispersion (truncation error) present in the two equations tends to mimic the neglected present in the two equations tends to mimic the neglected effects of capillary pressure and diffusion. The effective diffusion constants associated with this effect are proportional to the spacestep size. proportional to the spacestep size. Introduction In a previous paper we presented a system of differential equations that can be used to model oil recovery by chemical flooding. The general system allows for an arbitrary number of components as well as an arbitrary number of phases in an isothermal system. For a binary, two-phase system, the equations reduced to those of the Buckley-Leverett theory under the usual assumptions of incompressibility and each phase containing only a single component, as well as in the more general case where both phases have significant concentrations of both components, but the phases are incompressible and the concentration in one phase is a very weak function of the pressure of the other phase at a given temperature. pressure of the other phase at a given temperature. For a ternary, two-phase system a set of three differential equations was obtained. These equations are applicable to chemical flooding with surfactant, polymer, etc. In this paper, we present a numerical solution to these equations paper, we present a numerical solution to these equations for I D flow in the absence of gravity. Our purpose is to develop a model that includes the physical phenomena influencing oil displacement by surfactant systems and bridges the gap between laboratory displacement tests and reservoir simulation. It also should be of value in defining experiments to elucidate the mechanisms involved in oil displacement by surfactant systems and ultimately reduce the number of experiments necessary to optimize a given surfactant system.


1980 ◽  
Vol 20 (05) ◽  
pp. 402-406 ◽  
Author(s):  
James E. Vinatieri

Abstract This paper describes a study of the emulsions which could occur during a pilot surfactant flood, such as that conducted by Phillips Petroleum Co. in the North Burbank Unit, Osage County, OK. The phase behavior of this surfactant system can be characterized by three types of microemulsions, with the transition from one type to another being a function of the salinity. The rate at which emulsions coalesce was seen to correlate directly with the type of microemulsion. Coalescence was slow for macroemulsions at low salinities, rapid at intermediate salinities (where the final state was a three-phase system), and varied from slow to rapid at salinities above the three-phase region. Knowledge of the correlation between phase behavior and emulsion stability can be useful in treating macroemulsions produced during a surfactant flood. Introduction With the increased emphasis currently being placed on the use of surfactants for tertiary oil recovery, a potential problem exists with emulsions which can be produced as a consequence of a surfactant flood. For example, if a channeling problem between an injection well and a production well should occur, it may be possible to produce relatively large amounts of surfactant at moderately high concentrations (0.2 to 2.0070). Under these conditions, emulsions of oil and brine could be stabilized by the presence of the surfactant and could pose a serious problem. Although these emulsions are thermodynamically unstable and ultimately should separate into bulk oil and water phases, the presence of surfactants can increase greatly the time required for such separations. Typical oilfield operations allow, at most, several hours for this separation of phases to occur, but some emulsions containing surfactants may require weeks or even months to separate. Thus, a definite need exists for being able to accelerate this coalescence process. Phillips Petroleum Co. is conducting a pilot surfactant flood in the North Burbank Unit (NBU) in Osage County.1,2 The work reported here was directed at developing a contingency plan for breaking emulsions which may be produced by this surfactant flood. The problem of studying emulsions produced by a surfactant flood has two aspects:the nature of the phases which result when thermodynamic equilibrium finally is attained andthe rate at which this equilibrium state is reached. This is not to imply that any emulsion can be described completely by characterization of these two properties but rather that these are the two properties most important to oilfield operations and, hence, form the basis for the work reported here. The next section discusses the equilibrium properties of surfactant systems and the one following discusses the coalescence of emulsions. The fourth section describes the use of chemical demulsifiers to accelerate coalescence. Equilibrium Phase Behavior The equilibrium phase behavior of systems of oil and water containing appreciable amounts of surfactant (i.e., 0.5%) is characterized by the presence of microemulsions.1,3-5 These microemulsion phases have a high degree of structure and may contain large amounts of both oil and water.


1979 ◽  
Vol 19 (02) ◽  
pp. 107-115 ◽  
Author(s):  
J.L. Salager ◽  
J.C. Morgan ◽  
R.S. Schechter ◽  
W.H. Wade ◽  
E. Vasquez

Abstract A screening test used to help select surfactant systems potentially effective for oil recovery is to identify those formulations that yield middle-phase microemulsions when mixed with sufficient quantities of oil and brine. A correlation is presented to link these variables regarding their presented to link these variables regarding their contributions to middle-phase formation: structure of the sulfonated surfactant, alkane carbon number (ACN), and alcohol type and concentration. WOR and temperature effects are introduced as correction terms added to the empirical correlation.Sets of variables that give middle-phase microemulsions are shown as identical to those defining the low tension state without observable middle phases. This generally occurs for low surfactant phases. This generally occurs for low surfactant concentrations. Introduction Healy and Reed and Healy et al. have shown that the phase behavior of surfactant/brine/oil systems is a key factor in interpreting the performance of oil recovery by microemulsion performance of oil recovery by microemulsion processes. By systematically varying salinity, processes. By systematically varying salinity, they found low interfacial tensions and high solubilization of both oil and water in the microemulsion phase to occur in or near the salinity ranges giving phase to occur in or near the salinity ranges giving three phases. Since both low interfacial tensions and a high degree of solubilization are considered desirable for oil recovery, the conditions for three-phase formation assume added importance. Similar conclusions have been reported in other recent papers.Several investigators have considered the effect of different variables on the range of salinities for which three phases form. This optimum salinity (a more precise definition is given in a subsequent section) has been found to decrease with increasing surfactant molecular weight, and to increase with increasing chain length of the alcohol cosurfactant. Studies on the effect of alcohols by Jones and Dreher and Salter provided results similar to those reported by Hsieh and Shah.The interfacial tension at surfactant concentrations low enough so that a discernible third phase does not form has been the subject of considerable phase does not form has been the subject of considerable investigation regarding surfactant molecular weight and structure, oil ACN, salinity and surfactant concentration, and alcohol addition. A recent paper was a first attempt to tie together the low paper was a first attempt to tie together the low tension state observed at low surfactant concentrations and the three-phase region observed at higher surfactant concentrations. All indications point to an inextricable intertwining of phase point to an inextricable intertwining of phase behavior, surfactant partitioning, solubilization, and low tensions. This paper corroborates the equivalence of three-phase behavior and minimum tension as criteria for optimum formulation and presents a correlation that quantifies the trends presents a correlation that quantifies the trends observed previously. EXPERIMENTAL Aqueous phases containing surfactant, electrolyte (NaCl), and alcohol were contacted with an oil phase by shaking and allowed to stand until phase phase by shaking and allowed to stand until phase volumes became time independent for 2 days. All concentrations are expressed in grams of chemical per cubic centimeter of aqueous phase (g/cm3) per cubic centimeter of aqueous phase (g/cm3) before contacting with the hydrocarbon phase. Unless otherwise noted, the oil phase represents 20% of the initial total volume. All measurements, unless otherwise noted, were conducted at room temperature (25 plus or minus 1 degrees C). SPEJ p. 107


1981 ◽  
Vol 21 (01) ◽  
pp. 77-88 ◽  
Author(s):  
James E. Vinatieri ◽  
Paul D. Fleming

Abstract A new method of optimization has been developed for tertiary oil recovery systems employing surfactants. This method simultaneously adjusts all composition variables in a manner which greatly reduces the total number of compositions which need to be investigated experimentally. This multivariate optimization technique has been applied to two petroleum sulfonate systems, one containing a pure hydrocarbon and the other containing a crude oil. In both cases, significant reductions of interfacial tensions were achieved relative to those obtained by conventional optimization with respect to salinity alone. Surfactant systems for tertiary oil recovery commonly involve at least five components: oil, water, surfactant, cosurfactant, and electrolyte. The optimization of such systems is hindered by this large number of components and because interpolation of behavior is often difficult. Previously, such systems have been optimized by adjusting concentrations of individual components empirically. These empirical optimizations have indicated that surfactant systems which form three phases are preferred for oil recovery although they are not necessarily fully optimized. As stated by the Gibbs phase rule, a five-component, three-phase system has only two degrees of freedom at constant temperature and pressure. These two degrees of freedom can be identified mathematically by making use of chemical analysis of a three-phase sample. Thus, optimization of three-phase surfactant systems can be accomplished by adjusting only two variables, resulting in a dramatic reduction of time and effort required to optimize such systems. For the systems studied, both the volume per unit mass of surfactant and the viscosity of the microemulsion phase are increased significantly even though the optimization was based on interfacial tension only. These bonuses should lead to improved sweep efficiency in the displacement process. Introduction Surfactant systems have received much attention recently as a means for increasing the recovery of oil from a subterranean reservoir.1–5 Typically, these systems employ a petroleum sulfonate as the surfactant and an alcohol as a cosurfactant or co solvent. Thus, when the oil and brine (water plus electrolyte) also are considered, these oil recovery systems are seen to contain at least five components. Because of the high cost of surfactant systems, it is important that any such system be optimized to provide the greatest oil recovery at the lowest cost. Unfortunately, this optimization is hindered by, at least, these three factors:the large number of components and the correspondingly large number of possible compositions which must be evaluated,interactions between components which make interpolation of behavior difficult, andthe relative difficulty of performing displacement tests in porous media.


1970 ◽  
Vol 10 (01) ◽  
pp. 75-84 ◽  
Author(s):  
F.N. Schneider ◽  
W.W. Owens

Abstract Three-phase relative permeability characteristics applicable to various oil displacement processes in the reservoir such as combustion and alternate gas-water injection were determined on both outcrop and reservoir core samples. Steady-state and nonsteady-state tests were performed on a variety of sandstone and carbonate core samples having different wetting properties. Some of the tests were performed on preserved samples. Some of the three-phase tests were performed on samples that contained two flowing phases and a third nonflowing phase, either gas or oil. These were classed as three-phase flow tests because the third phase played an important role in the flow behavior which was determined. The three-phase relative permeability test results are directly compared with the results of two-phase gas-oil and water-oil test. Wetting-phase relative permeability was found to be primarily dependent on its own saturation, i.e., relative permeability to the wetting phase during three-phase flow was in agreement with and could be predicted from the tow-phase data. Nonwetting-phase relative permeability-saturation relationships were found to be more complex and to depend in some cases on the saturation history of both nonwetting phases and on the saturation ratio of the second nonwetting phase and the wetting phases. Trapping of a given nonwetting phase or mutual flow interference between the two nonwetting phases when both are flowing accounts for most of the low relative permeabilities observed for three-phase flow tests. However, in special cases nonwetting-phase relative permeabilities at a given saturation are higher than those given by two-phase flow data. Despite these complexities some types of three-phase flow behavior can be predicted from two-phase flow data. Through its effect on the spatial distribution of the phases, wettability is shown to be a controlling factor in determining three-phase relative permeability characteristics. however, despite the importance of wettability the present data shown that for both water-wet and oil-wet systems oil recovery can be improved by several different injection processes, but the additional oil recovery is accompanied by lower fluid mobility. Introduction The increasing emphasis on optimizing recovery and the rapid and extensive development and use of mathematical modes for predicting reservoir performance are together creating a widespread need for reliable basic data on rock flow behavior. The two-phase imbibition or drainage flow relationships common to conventional oil recovery processes (depletion, gas or water injection, gravity drainage) are not applicable to some of the newer secondary and tertiary recovery techniques. This is because the reservoir displacement process may differ from that easily simulated in laboratory relative permeability studies. in some situations, data are needed fro a three-phase system where almost any combination of two fluids or even all three fluids may be flowing. In other, however, only two flowing phases are present, but the saturation history of the system is unique. Leverett and Lewis were the first to collect experimental relative permeability data on a three-phase system. Corey et al. were similarly leaders in efforts to define three-phase flow relationships using empirical approaches. Space does not permit a critical review of these earlier works. For those interested, a recent article by Saraf and Fatt provides a brief discussion of the experimental techniques used by earlier investigators. Suffice it to say that both experimental and empirical approaches have been used, but the applicability of both has been limited because in only one case have three-phase relative permeability data been obtained on reservoir rock material. SPEJ P. 75ˆ


1982 ◽  
Vol 22 (03) ◽  
pp. 350-352
Author(s):  
G.E. Kellerhals

Abstract In surfactant flooding, low interfacial tensions (IFT's) are required for recovery of additional significant quantities of crude oil from a reservoir rock. This paper indicates the usefulness of perspective plots to facilitate comparison of sets of IFT data. Such perspective plots simplify the process of screening various surfactant systems for enhanced oil recovery. Introduction Numerous articles have been written about the effects and/or importance of IFT between oil and aqueous phases in determining ultimate oil recovery during a phases in determining ultimate oil recovery during a secondary (waterflooding) or tertiary oil-recovery process. In the area of micellar/polymer or surfactant process. In the area of micellar/polymer or surfactant flooding, IFT has been studied extensively both by industrial and by academic investigators. A simplistic summary of this work is that low IFT's (generally corresponding to high capillary numbers ( are required for recovery of additional significant quantities of crude oil from a reservoir rock. Method Development Several variables influence between an oil-rich phase and a surfactant-containing aqueous phase. During phase and a surfactant-containing aqueous phase. During a surfactant flood, variations in surfactant concentration and salt concentration will occur as a result of mixing of the chemical slug with the pre flush (or formation brine) and polymer drive (" rear mixing" ). Nelson investigated salt concentrations required during a chemical flood to achieve efficient oil displacement. Since these variables (and others) change during the progress of a flood, it is desirable to determine the impact of these changes on the IFT between the oil- and water-rich phases. To assess the importance of changes in these two key variables (surfactant concentration and salinity) on IFT, an x-y plot may be constructed with values of each variable along the axes. The IFT for a particular surfactant concentration and salinity then is obtained experimentally and the numerical value placed at the corresponding (x, y) point on the plot. The resultant figure/table can be referred to as an IFT map. Points of equal, or about equal, IFT can be connected to produce an IFT contour map. In the investigation of the effect(s) of temperature on a given surfactant system and crude oil, IFT maps might be constructed for each of the pertinent temperatures. IFT's might be determined at six different sodium chloride concentrations (e.g., 1.0, 1.5, 2.0, 3.0, 4.0, and 5.0 wt%) and four surfactant concentrations (e.g., 0.085, 0.064, 0.042, and 0.021 meq/mL), resulting in IFT maps (for each temperature) each consisting of 24 IFT values. A comparison of the values of one map to the values of a second map (measurements made at different temperature) then is required to determine the impact of the temperature change. A single value for IFT for a given salinity and surfactant concentration assumes that the system is two-phase, because two IFT's can be measured for a three-phase system consisting of an oil-rich phase, a water-rich phase, and a microemulsion phase. phase. A method to allow easier comparison for the relatively large number of IFT data points that may be obtained during the study/screening of various surfactant systems at various conditions is described in this paper. The technique consists of interpolating between IFT values and then plotting the data with a perspective plotting routine. The method allows comparisons of IFT values for different crude oils, temperatures, cosolvent types, surfactant types, hardness ion concentrations, etc., through visual scanning of a perspective plot ranter than through trying to judge or compare numerical IFT values of an IFT map. SPEJ p. 350


1982 ◽  
Vol 22 (05) ◽  
pp. 743-749 ◽  
Author(s):  
Alain Graciaa ◽  
Lester N. Fortney ◽  
Robert S. Schechter ◽  
William H. Wade ◽  
Seang Yiv

Abstract The phase behavior of nonionic surfactants having the same hydrophilic/lipophilic balance (HLB) but differing molecular weights has been studied. It is shown that the optimal alkane carbon number (ACN) depends on the HLB, but that increasing the hydrophobe molecular weight narrows the middle phase region, increases the solubilization parameter, and decreases the interfacial tension (IFT). We found that the width of the three-phase region is in simple inverse proportion to the solubilization parameter at optimal salinity and that the multiple of IFT times the square of the solubilization is a constant. We also found it possible to synthesize nonionics that rival anionics in the properties mentioned above. Introduction There is increasing evidence that the phase behavior of surfactant/oil/brine systems and the efficiency of oil recovery with micellar solutions are connected intimately. For instance, laboratory core floods have shown that surfactant systems exhibit maximum oil recovery at the optimal salinity. The concept of optimal salinity, introduced by Healy and Reed, is especially useful because it pen-nits screening of surfactant systems by relatively simple experiments requiring the observation of the number and the types of phases that coexist at equilibrium when surfactant/oil/brine mixtures are blended. Optimal salinity, defined as that middle-phase microemulsion system containing equal volumes of oil and water, is not difficult to determine, and, thus, conditions for the most efficient surfactant system can be established. It is now well known that many different surfactant systems have the same optimal salinity. Further, it generally has been assumed, but not definitely established by laboratory experiments that the preferred surfactant system, selected from a group of systems having the same optimal salinity, will be that which solubilizes the largest volume of oil and brine per unit mass of surfactant. We do not necessarily subscribe to this simple view. since there are many factors other than solubilization (such as surfactatant retention) that may influence oil recovery efficiency however, all other factors being equal, it is reasonable to attempt to maximize solubilization, especially because it has been found synonymous with minimal IFT's-an equally important factor governing effectiveness of oil recovery. This paper seeks to identify some surfactant structural features that will lead to increased solubilization and decreased IFT. We have addressed this important question in past publications but have met with only limited success. The difficulty has been that changing the surfactant structure dictates that a second corresponding change be made so that the resulting system would remain optimal. For instance, one can increase the length of the hydrocarbon tail of the surfactant molecule and at the same time compensate for this change either by decreasing the amount of hydrophobic alcohol added to the system or by decreasing the salinity of the system. The results obtained in this manner have remained difficult to interpret because all changes can and most often do alter the solubilization of oil and water in the middle-phase microemulsion. Therefore, it was not possible to separate that pan of the resulting solubilization change caused strictly by the modification of the surfactant structure. In the study discussed here, we made compensating changes in the surfactant structure, keeping all other variables fixed. For nonionic surfactants, compensating changes can be made in several ways. SPEJ P. 743^


1981 ◽  
Vol 21 (05) ◽  
pp. 581-592 ◽  
Author(s):  
Creed E. Blevins ◽  
G. Paul Willhite ◽  
Michael J. Michnick

Abstract The three-phase region of the Witco TRS 10-80 sulfonate/nonane/isopropanol (IPA)/2.7% brine system was investigated in detail. A method is described to locate phase boundaries on pseudoternary diagrams, which are slices of the tetrahedron used to display phase boundaries of the four-component system.The three-phase region is wedge-like in shape extending from near the hydrocarbon apex to a point near 20% alcohol on the brine/alcohol edge of the tetrahedron. It was found to be triangular in cross section on pseudoternary diagrams of constant brine content, with its base toward the nonane/brine/IPA face. The apex of the three-phase region is a curved line where the M, H + M, and M + W regions meet. On this line, the microemulsion (M*) is saturated with hydrocarbon, brine, and alcohol for a particular sulfonate content. A H + M region exists above the three-phase region, and an M + W region exists below it.Relationships were found between the alcohol concentration of the middle phase and the sulfonate/alcohol and sulfonate/hydrocarbon ratios in the middle phase. These correlations define the curve that represents the locus of saturated microemulsions in the quaternary phase diagram. Alcohol contents of excess oil and brine phases also were correlated with alcohol in the middle phase.Pseudoternary diagrams for sulfonates are presented to provide insight into the evolution of the three-phase region with salinity. Surfactants include Mahogany AA, Phillips 51918, Suntech V, and Stepan Petrostep(TM) 500. Differences between phase diagrams follow trends inferred from comparisons of equivalent weights, mono-/disulfonate content, optimal salinity, and EPACNUS values. Introduction The displacement of oil from a porous rock by microemulsions is a complex process. As the microemulsion flows through the rock, it mixes with and/or solubilizes oil and water. The composition of the microemulsion is altered by adsorption of sulfonate, leading to expulsion of water and/or oil. Multiphase regions are encountered where phases may flow at different velocities depending on the fluid/rock interactions. Knowledge of phase behavior of microemulsion systems is required to understand the displacement mechanisms, to model process performance, and to select suitable compositions for injection.Microemulsions used in oil recovery processes consist of five components: oil, water, salt, surfactant (usually a petroleum sulfonate and a cosurfactant (usually an alcohol). Brine frequently is considered to be a pseudocomponent. When this assumption is valid, a microemulsion may be studied as a four-component system.Windsor developed a qualitative explanation and classification scheme for microemulsion phase behavior. Healy and Reed showed that Windsor's concepts were applicable to microemulsions used in oil recovery processes. Healy et al. introduced the concept of optimal salinity to define a particular characteristic of surfactant system. The optimal salinity for phase behavior was defined as the salinity where the middle phase of a three-phase system has equal solubility of oil and brine. They also found that optimal salinity determined in this manner was close to the salinity where the interfacial tension between the upper and middle phases was equal to the interfacial tension between the middle and lower phases.Salager et al. developed a correlation of optimal salinity data for a particular surfactant. SPEJ P. 581^


1982 ◽  
Vol 22 (01) ◽  
pp. 53-60 ◽  
Author(s):  
William J. Benton ◽  
Natoli John ◽  
Syed Qutubuddin ◽  
Surajit Mukherjee ◽  
Clarence M. Miller

William J. Benton, Carnegie-Mellon U. John Natoli, Carnegie-Mellon U. Qutubuddin, Syed SPE, Carnegie-Mellon U. Mukherjee, Surajit, Carnegie-Mellon U. Miller, Clarence M., SPE, Carnegie-Mellon U. Fort Jr., Tomlinson, Carnegie-Mellon U. Abstract Phase behavior studies were carried out for two systems containing pure surfactants but exhibiting behavior similar to that of commercial petroleum sulfonates. One system contained the isomerically pure surfactant sodium-8-phenyl-n-hexadecyl-n-sulfonate (Texas 1). The other contained sodium dodecyl sulfate (SDS). Additional components used in both systems were various pure short-chain alcohols, NaCl brine and n-decane. Aqueous solutions containing surfactant, cosurfactant, and NaCl were studied over a wide range of compositions with polarizing and modulation contrast microscopy, as well as the polarized light screening technique. Viscosity measurements were conducted on selected scans of the Texas 1 system. Maxima and minima of the scans were correlated with textural changes observed with microscopy. The aqueous solutions were contacted with equal volumes of n-decane, and phase behavior and interfacial tensions were determined. The middle microemulsion phase was found to be oil continuous close to the upper phase boundary and water continuous close to the lower phase boundary. Both the Texas 1 and SDS systems showed similar behavior in that the middle microemulsion phase was observed over the entire range of surfactant concentrations studied. Introduction Surfactant systems usually consisting of petroleum sulfonate, an alcohol, salt, and water have been used for enhanced oil recovery. Various parameters important to oil recovery by surfactant flooding, such as interfacial tension and viscosity, are related strongly to the phase behavior of the microemulsion systems. The relationship of ultralow interfacial tensions to phase separation has been treated in our laboratory. The recovery of petroleum from laboratory cores and field tests appears to be related directly to phase behavior. It is important to understand phase behavior to identify the mechanisms involved and improve the efficiency of the oil-recovery process. The physicochemical aspects of the phase behavior of microemulsion systems containing commercial petroleum sulfonates as surfactants have been well documented by Healy and Reed and others. However, the systems studied were not pure, and the commercial surfactants sometimes contained as much as 40% inactive ingredients. There is a need to develop model microemulsion systems using pure components. Such systems would provide an experimental platform for verifying or interpreting the implications of any model for the phase behavior of multicomponent microemulsion systems and also allow the behavior of commercial systems to be predicted and understood. The objective of our work has been to fulfill these needs. Microemulsions have been classified as lower phase (l), upper phase (u), or middle phase (m) in equilibrium with excess oil, excess brine, or both excess oil and brine, respectively. Transitions among these phases have been studied as functions of salinity, alcohol concentration, temperature, etc. The middle-phase microemulsion is particularly significant because microemulsion/excess brine and microemulsion/excess oil tensions can be ultra low simultaneously. The concept of an optimal parameter as proposed originally by Reed and Healy when equal amounts of oil and brine are solubilized in the middle phase has been followed in this paper. We have shown earlier that the structure of petroleum sulfonate solutions exhibits a general pattern of variation with salinity. SPEJ P. 53^


Sign in / Sign up

Export Citation Format

Share Document