Miscible EOR Processes: Existence of Elliptic Regions in Gasflood Modeling

2007 ◽  
Author(s):  
Adolfo Puime Pires ◽  
Pavel G. Bedrikovetsky ◽  
Thiago Alvim Dutra
2021 ◽  
Author(s):  
Prakash Purswani ◽  
Russell T. Johns ◽  
Zuleima T. Karpyn

Abstract The relationship between residual saturation and wettability is critical for modeling enhanced oil recovery (EOR) processes. The wetting state of a core is often quantified through Amott indices, which are estimated from the ratio of the saturation fraction that flows spontaneously to the total saturation change that occurs due to spontaneous flow and forced injection. Coreflooding experiments have shown that residual oil saturation trends against wettability indices typically show a minimum around mixed-wet conditions. Amott indices, however, provides an average measure of wettability (contact angle), which are intrinsically dependent on a variety of factors such as the initial oil saturation, aging conditions, etc. Thus, the use of Amott indices could potentially cloud the observed trends of residual saturation with wettability. Using pore network modeling (PNM), we show that residual oil saturation varies monotonically with the contact angle, which is a direct measure of wettability. That is, for fixed initial oil saturation, the residual oil saturation decreases monotonically as the reservoir becomes more water-wet (decreasing contact angle). Further, calculation of Amott indices for the PNM data sets show that a plot of the residual oil saturation versus Amott indices also shows this monotonic trend, but only if the initial oil saturation is kept fixed. Thus, for the cases presented here, we show that there is no minimum residual saturation at mixed-wet conditions as wettability changes. This can have important implications for low salinity waterflooding or other EOR processes where wettability is altered.


2007 ◽  
Vol 22 (3) ◽  
pp. 329-337
Author(s):  
Andrei Bourchtein ◽  
Ludmila Bourchtein

To eliminate the fast gravitational waves of great amplitude, which are not observed in the real atmosphere, the initial fields for numerical schemes of atmosphere forecasting and modeling systems are usually adjusted dynamically by applying balance relations. In this study we consider different forms of the balance equations and for each of them we detect the nonelliptic regions in the gridded atmosphere data of the Southern Hemisphere. The performed analysis reveals the geographical, vertical and zonally averaged distributions of nonelliptic regions with the most concentration in the tropical zone. The area of these regions is essentially smaller and less intensive for more complete and physically justified balance relations. The obtained results confirm the Kasaharas assumption that ellipticity conditions are violated in the actual atmospheric fields essentially due to approximations made under deriving the balance equations.


2018 ◽  
pp. 177-192
Author(s):  
Raj Deo Tewari ◽  
Abhijit Y. Dandekar ◽  
Jaime Moreno Ortiz
Keyword(s):  

Author(s):  
Bhimsen Shivamoggi ◽  
G Heijst ◽  
Leon Kamp

Abstract The Okubo [5]-Weiss [6] criterion has been extensively used as a diagnostic tool to divide a two-dimensional (2D) hydrodynamical flow field into hyperbolic and elliptic regions and to serve as a useful qualitative guide to the complex quantitative criteria. The Okubo-Weiss criterion is frequently validated on empirical grounds by the results ensuing its application. So, we will explore topological implications into the Okubo-Weiss criterion and show the Okubo-Weiss parameter is, to within a positive multiplicative factor, the negative of the Gaussian curvature of the underlying vorticity manifold. The Okubo-Weiss criterion is reformulated in polar coordinates, and is validated via several examples including the Lamb- Oseen vortex, and the Burgers vortex. These developments are then extended to 2D quasi- geostrophic (QG) flows. The Okubo-Weiss parameter is shown to remain robust under the -plane approximation to the Coriolis parameter. The Okubo-Weiss criterion is shown to be able to separate the 2D flow-field into coherent elliptic structures and hyperbolic flow configurations very well via numerical simulations of quasi-stationary vortices in QG flows. An Okubo-Weiss type criterion is formulated for 3D axisymmetric flows, and is validated via application to the round Landau-Squire Laminar jet flow.


Sign in / Sign up

Export Citation Format

Share Document