Improved Shale Gas Production Forecasting Using a Simplified Analytical Method-A Marcellus Case Study

Author(s):  
John Matthew Thompson ◽  
Viannet Okouma Mangha ◽  
David Mark Anderson
Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shijun Huang ◽  
Jiaojiao Zhang ◽  
Sidong Fang ◽  
Xifeng Wang

In shale gas reservoirs, the production data analysis method is widely used to invert reservoir and fracture parameter, and productivity prediction. Compared with numerical models and semianalytical models, which have high computational cost, the analytical model is mostly used in the production data analysis method to characterize the complex fracture network formed after fracturing. However, most of the current calculation models ignore the uneven support of fractures, and most of them use a single supported fracture model to describe the flow characteristics, which magnifies the role of supported fracture to a certain extent. Therefore, in this study, firstly, the fractures are divided into supported fractures and unsupported fractures. According to the near-well supported fractures and far-well unsupported fractures, the SRV zone is divided into outer SRV and inner SRV. The four areas are characterized by different seepage models, and the analytical solutions of the models are obtained by Laplace transform and inverse transform. Secondly, the material balance pseudotime is introduced to process the production data under the conditions of variable production and variable pressure. The double logarithmic curves of normalized production rate, rate integration, the derivative of the integration, and material balance pseudotime are established, and the parameters are interpreted by fitting the theoretical curve to the measured data. Then, the accuracy of the method is verified by comparison the parameter interpretation results with well test results, and the influence of parameters such as the half-length and permeability of supported and unsupported fractures on gas production is analyzed. Finally, the proposed method is applied to four field cases in southwest China. This paper mainly establishes an analytical method for parameter interpretation after hydraulic fracturing based on the production data analysis method considering the uneven support of fractures, which is of great significance for understanding the mechanism of fracturing stimulation, optimization of fracturing parameters, and gas production forecast.


2013 ◽  
Author(s):  
Juntai Shi ◽  
Lei Zhang ◽  
Yuansheng Li ◽  
Wei Yu ◽  
Xiangnan He ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Qingyu Li ◽  
Peichao Li ◽  
Wei Pang ◽  
Quanfu Bi ◽  
Zonghe Du ◽  
...  

Shale gas has now become an important part of unconventional hydrocarbon resources all around the world. The typical properties of shale gas are that both adsorbed gas and free gas play important roles in gas production. Thus the contributions of free and adsorbed gas to the shale gas production have become a hot, significant, and challenging problem in petroleum engineering. This paper presents a new analytical method to calculate the amounts of free and adsorbed gas in the process of shale gas extraction. First, the expressions of the amounts of adsorbed gas, matrix free gas, and fracture free gas in shale versus the producing time are presented on the basis of Langmuir adsorption model and formation pressure distribution. Next, the mathematical model of multifractured horizontal wells in shale gas reservoirs is established and solved by use of Laplace transform and inversion to obtain the normalized formation pressure distribution. Finally, field case studies of two multifractured horizontal shale gas wells in China are carried out with the presented quantitative method. The amounts of adsorbed and free gas in production are calculated, and the adsorbed-to-total ratio is provided. The results show that the proposed method is reliable and efficient.


2020 ◽  
Vol 5 ◽  
pp. 100022
Author(s):  
JB Montgomery ◽  
SJ Raymond ◽  
FM O’Sullivan ◽  
JR Williams

2018 ◽  
Vol 167 ◽  
pp. 929-943 ◽  
Author(s):  
Haiyan Zhu ◽  
Xuanhe Tang ◽  
Qingyou Liu ◽  
Kuidong Li ◽  
Jialin Xiao ◽  
...  

2012 ◽  
Vol 15 (01) ◽  
pp. 51-59 ◽  
Author(s):  
Morteza Nobakht ◽  
C.R.. R. Clarkson

Summary Hydraulically fractured vertical and horizontal wells completed in shale gas and some tight gas plays are known to exhibit long periods of linear flow. Recently, techniques for analyzing this flow period using (normalized) production data have been put forth, but there are known errors associated with the analysis. In this paper, linear flow from fractured wells completed in tight/shale gas reservoirs subject to a constant-production-rate constraint is studied. We show analytically that the square-root-of-time plot (a plot of rate-normalized pressure vs. square root of time that is commonly used to interpret linear flow) depends on the production rate. We also show that depending on production rate, the square-root-of-time plot may not be a straight line during linear flow; the higher the production rate, the earlier in time the plot deviates from the expected straight line. This deviation creates error in the analysis, especially for flow-regime identification. To address this issue, a new analytical method is developed for analyzing linear-flow data for the constant-gas-rate production constraint. The method is then validated using a number of numerically simulated cases. As expected, on the basis of the analytical derivation, the square-root-of-time plots for these cases depend on gas-production rate and, for some cases, the plot does not appear as a straight line during linear flow. Finally, we found that there is excellent agreement between the fracture half-lengths obtained using this method and the input fracture half-lengths entered in to numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document