Formation Damage during Disposal of CO2 into a high Salinity Aquifer

Author(s):  
Shahriar Osfouri ◽  
Khosrow Mohammadi ◽  
Najmeh Mehrabi ◽  
Mehdi Mohammadi ◽  
Reza Azin
2013 ◽  
Author(s):  
Fan Zhang ◽  
Desheng Ma ◽  
Qiang Wang ◽  
Youyi Zhu ◽  
Wenli Luo

Author(s):  
Sanchay Mukherjee ◽  
◽  
Son Thai Dang ◽  
Chandra Rai ◽  
Carl Sondergeld ◽  
...  
Keyword(s):  

Author(s):  
Wyatt Wick ◽  
◽  
Shantanu Taneja ◽  
Ishank Gupta ◽  
Carl H. Sondergeld ◽  
...  

Author(s):  
Ekaterina Shchurova ◽  
Ekaterina Shchurova ◽  
Rimma Stanichnaya ◽  
Rimma Stanichnaya ◽  
Sergey Stanichny ◽  
...  

Sivash bay is the shallow-water lagoon of the Azov Sea. Restricted water exchange and high evaporation form Sivash as the basin with very high salinity. This factor leads to different from the Azov Sea thermal and ice regimes of Sivash. Maine aim of the study presented to investigate recent state and changes of the characteristics and processes in the basin using satellite data. Landsat scanners TM, ETM+, OLI, TIRS together with MODIS and AVHRR were used. Additionally NOMADS NOAA and MERRA meteorological data were analyzed. The next topics are discussed in the work: 1. Changes of the sea surface temperature, ice regime and relation with salinity. 2. Coastal line transformation – long term and seasonal, wind impact. 3. Manifestation of the Azov waters intrusions through the Arabat spit, preferable wind conditions.


2020 ◽  
Vol 16 (8) ◽  
pp. 1044-1057 ◽  
Author(s):  
Hamdoon A. Mohammed

Background: Suaeda is a halophytic genus belonging to the Amaranthaceae family and can survive in the high salted marsh areas of the world. Suaeda plants can biosynthesize natural substances with powerful antioxidant activity and are considered as a renewable source of energy, food, and edible oil for a larger number of populations living in the harsh environment with high salinity and drought conditions. These plants also meet folk and alternative medicines' needs. Methods: The review encompasses available scientific literature related to folk medicinal uses of Suaeda plants, their nutritional values, and chemical constituents. In addition, the biological trials applied for the Suaeda plants are also part of the review. The review covers the researches from major science literature search engines and other sites representing scientific literature, i.e., Scifinder, Google Scholar, PubMed, ScienceDirect, Scopus, and Google. The searches were programmed on the advance options available in the search engines and are latest up to November 2019. The searches were exhaustive and rechecked for accuracy. Conclusion: The study summarizes the uses of Suaeda plants as a remedy for various ailments due to their contents from the polyphenols and flavonoids. The comparatively large amounts of fixed oils, minerals, and vitamins in Suaeda plants have also made them potential renewable sources for foods.


2016 ◽  
Vol 5 (12) ◽  
pp. 5179
Author(s):  
Ilahi Shaik* ◽  
P. Janakiram ◽  
Sujatha L. ◽  
Sushma Chandra

Indole acetic acid is a natural phytohormone which influence the root and shoot growth of the plants. Six (GM1-GM6) endosymbiotic bacteria are isolated from Gracilaria corticata and screened for the production of IAA out of six, three bacterial strains GM3, GM5 and GM6 produced significant amount of IAA 102.4 µg/ml 89.40 µg/ml 109.43 µg/ml respectively. Presence of IAA in culture filtrate of the above strains is further analyzed and confirmed by TLC. As these bacterial strains, able to tolerate the high salinity these can be effectively used as PGR to increase the crop yield in saline soils.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
ANSHUMAN SINGH ◽  
ASHWANI KUMAR ◽  
R.K. YADAV ◽  
ASHIM DUTTA ◽  
D.K. SHARMA

Guav a cv . Allahabad Safeda w as grown in saline soils and irrigated with the best av ailable w ater -1 -1 + -1 (EC 2.8 dS m ). Based on chemical composition (pH- 7.1, EC - 2.8 dS m , Na - 20.04 meq l and IW IW sodium adsorption ratio- 4.86), irrigation w ater w as categorized as marginally saline. The soil pH 2 -1 w as mostly below 8.5 but mean electrical conductivity (EC ) v alues ranged from 0.5-2 dS m 2 indicating moderate to high salinity in the experimental soil. After one-y ear of experimentation, fiv e plants randomly selected from each treatment and the data w ere recorded. Plant height -1 -1 significantly increased (LSD 5%) with increase in salinity from 0.5 dS m to 1.4 dS m . A similar -1 trend w as noted with respect to stem girth. The av erage plant height at 0.5, 0.9 and 1.4 dS m salinity lev els w as 98.3 cm, 108.3 cm and 123 cm, respectiv ely whereas the corresponding stem girth v alues -1 w ere 2.24 cm, 2.28 cm and 2.46 cm. At 2 dS m salinity ,how ev er , both av erage plant height (94.6 cm) and stem girth (2.24 cm) significantly decreased and w ere found to be comparable to control (0.5 dS -1 + -1 m ) v alues. Plants show ed negligible Na accumulation in leav es up to 1.4 dS m salinity , but -1 + exposure to elev ated salinity (2 dS m ) significantly increased leaf Na (0.16% DW). These data -1 indicated a salinity tolerance (EC )threshold of about 1.5 dS m inguav a cultiv ar Allahabad Safeda.


Sign in / Sign up

Export Citation Format

Share Document