Isolation and identification of IAA producing endosymbiotic bacteria from Gracillaria corticata (J. Agardh)

2016 ◽  
Vol 5 (12) ◽  
pp. 5179
Author(s):  
Ilahi Shaik* ◽  
P. Janakiram ◽  
Sujatha L. ◽  
Sushma Chandra

Indole acetic acid is a natural phytohormone which influence the root and shoot growth of the plants. Six (GM1-GM6) endosymbiotic bacteria are isolated from Gracilaria corticata and screened for the production of IAA out of six, three bacterial strains GM3, GM5 and GM6 produced significant amount of IAA 102.4 µg/ml 89.40 µg/ml 109.43 µg/ml respectively. Presence of IAA in culture filtrate of the above strains is further analyzed and confirmed by TLC. As these bacterial strains, able to tolerate the high salinity these can be effectively used as PGR to increase the crop yield in saline soils.

2016 ◽  
Vol 43 (8) ◽  
pp. 739 ◽  
Author(s):  
Louis Moir-Barnetson ◽  
Erik J. Veneklaas ◽  
Timothy D. Colmer

We evaluated tolerances to salinity (10–2000 mM NaCl) in three halophytic succulent Tecticornia species that are differentially distributed along a salinity gradient at an ephemeral salt lake. The three species showed similar relative shoot and root growth rates at 10–1200 mM NaCl; at 2000 mM NaCl, T. indica subsp. bidens (Nees) K.A.Sheph and P.G.Wilson died, but T. medusa (K.A.Sheph and S.J.van Leeuwen) and T. auriculata (P.G.Wilson) K.A.Sheph and P.G.Wilson survived but showed highly diminished growth rates and were at incipient water stress. The mechanisms of salinity tolerance did not differ among the three species and involved the osmotic adjustment of succulent shoot tissues by the accumulation of Na+, Cl– and the compatible solute glycinebetaine, and the maintenance of high net K+ to Na+ selectivity to the shoot. Growth at extreme salinity was presumably limited by the capacity for vacuolar Na+ and Cl– uptake to provide sufficiently low tissue osmotic potentials for turgor-driven growth. Tissue sugar concentrations were not reduced at high salinity, suggesting that declines in growth would not have been caused by inadequate photosynthesis and substrate limitation compared with plants at low salinity. Equable salt tolerance among the three species up to 1200 mM NaCl means that other factors are likely to contribute to species composition at sites with salinities below this level. The lower NaCl tolerance threshold for survival in T. indica suggests that this species would be competitively inferior to T. medusa and T. auriculata in extremely saline soils.


2011 ◽  
Vol 57 (No. 3) ◽  
pp. 122-127 ◽  
Author(s):  
D. Egamberdieva

The abilities of Pseudomonas extremorientalis TSAU20 and P. chlororaphis TSAU13 to colonise and survive in the rhizosphere of common bean under saline conditions were studied. Four salinity levels (5.0, 7.5, 10.0, and 12.5 dS/m) were maintained in the gnotobiotic system using NaCl salt. Results showed that with increasing salt content root-tip colonization of both bacterial strains was reduced. Both bacterial treatments used in the study increased root and/or shoot length compared to non-treated plants at each NaCl concentration tested, whereas shoot growth was not stimulated at high saline condition (12.5 dS/m). In conclusion, the results of this study indicated that P. extremorientalis TSAU20 and P. chlororaphis TSAU 13 have the ability to survive in ecologically stressed conditions, such as saline and nitrogen deficient soils, and may positively effect on plant growth of bean. High salinity inhibited their colonisation in the rhizosphere of bean and thus their stimulatory effect on plants was also reduced.


2019 ◽  
Vol 41 (4) ◽  
Author(s):  
Nguyen Ngoc Lan ◽  
Vu Van Dzung ◽  
Nguyen Thi Kim Lien ◽  
Nguyen Kim Thoa ◽  
Do Huu Nghi ◽  
...  

Beneficial plant-growth-promoting bacteria (PGPB) have been reasonably applied to rescue crucial issue for agriculture by salinity soil. Observed most of PGPB was found in endophyte, rhizosphere and soil. Indole acetic acid (IAA)-producing bacteria could naturally stimulate and facilitate plant growth. The knowledge of IAA production and content of bacteria resident in the marine environment has been typically insufficient and limited to date. In recent years, unwarrantable intrusions of sea water have been enlarged in the Mekong River Delta of Vietnam, threatening productive rice fields, local fruits, and cash crops. Therefore, finding PGPB in the coastal regions in the Mekong River Delta as a creative resource for sustainable agriculture is necessary and is a prompt challenge. In this study, IAA-producing bacteria from coastal regions of Ben Tre and Tra Vinh Provinces were isolated and adequately identified. Out of 202 bacterial isolates, 10 isolates showed the possible ability to produce IAA from L-tryptophan. These 10 isolates were objectively evaluated the capacity to produce IAA under 5% (w/v) NaCl in King B and marine broths. The results revealed that IAA production decreased in 5% NaCl, even though bacterial growth increased. These 10 IAA-producing bacteria were classified at the species level, Marinobacter hydrocarbonoclasticus, M. pelagius, M. daepoensis, and Mameliella phaeodactyli by 16S rRNA gene analysis. The most IAA producer in King’s B broth, the isolate C7, was investigated in more detail. The isolate C7 produced the maximum IAA amount (192.2 ± 1.14 µg/ml) under the presence of 20 g/l yeast extract, 2 g/l of L-tryptophan and 1% NaCl. The isolate C7 was able to grow at 1–17% (w/v) NaCl (optimum, 4%), but not in the absence of NaCl, indicating it is a moderate halophilic bacteria. This study highlighted the considerable ability to produce IAA of marine bacteria, which could be thoughtfully considered to use naturally as biofertilizers to promote plant growth in saline intrusion lands. 


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 438A-438
Author(s):  
Marc van Iersel

Auxins are commonly used to induce root formation during in-vitro culture of higher plants. Because transplanting is often accompanied by root damage and loss of small roots, auxins also could be beneficial in minimizing transplant shock. Vinca (Cataranthus rosea) seeds were germinated in a peat-lite growing mix and transplanted into pots (55 mL) filled with a diatomaceous earth (Isolite) 10 days after planting. Pots were then placed in a tray containing 62.5 mL of auxin solution per pot. Two different auxins [indole-acetic acid (IAA) and naphtylacetic acid (NAA)] were applied at rates ranging from 0.01 to 100 mg/L. Post-transplant growth was slow, possibly because of Fe+2-deficiencies. Both IAA (1–10 mg/L) and NAA (0.01–10 mg/L) significantly increased post-transplant root and shoot growth. As expected, NAA was effective at much lower concentrations than IAA. At 63 days after transplant, shoot dry mass of plants treated with 0.1 mg NAA/L was four times that of control plants, while 10 mg IAA/L increased shoot dry mass three-fold. High rates of both IAA (100 mg/L) and NAA (10–100 mg/L) were less effective. The highest NAA rate (100 mg/L) was phytotoxic, resulting in very poor growth and death of many plants. These results suggest that auxins may be a valuable tool in reducing transplant shock and improving plant establishment.


2021 ◽  
Vol 23 (06) ◽  
pp. 1294-1312
Author(s):  
Yamini P ◽  
◽  
Reshmi Gopalakrishnan ◽  
Sanjay Prasad S ◽  
Karkuvelraja R ◽  
...  

Indole acetic acid (IAA) production is a major property of rhizosphere bacteria that stimulates and facilitates plant growth. The present work deals with the isolation, characterization, and identification of indole acetic acid-producing bacteria from the rhizospheric soil. Out of four organisms isolated from serial dilution, Sample-2 confirmed thick bands of IAA production by TLC analysis. 16s rRNA analysis showed the isolated organism was found to be Pseudomonas fluorescence with a similarity of 88%. The isolated organism treat plants showed increased shoot and root length in plant growth analysis. In conclusion, the isolated IAA-producing bacteria can be used as efficient biofertilizer inoculants to promote plant growth.


2017 ◽  
Vol 2017 ◽  
pp. 1-5
Author(s):  
Ghazala Yaqub ◽  
Zubi Sadiq ◽  
Almas Hamid ◽  
Amber Fatima ◽  
Zainab Ijaz

Work presented herein is the first report of two dual-action hybrids synthesized by covalent linkage of carbazole based novel antibacterial compounds with efflux pump inhibitors, that is, indole acetic acid/gallic acid. In this paper, novel antibacterial compounds 2 and 3 were prepared first and then these were covalently linked with efflux pump inhibitors, that is, indole acetic acid/gallic acid leading to the successful formation of two dual-action hybrids 4 and 5. Prepared antibacterials and hybrids were evaluated for their bacteria cell killing capability against Escherichia coli, Staphylococcus aureus, Pasteurella multocida, and Bacillus subtilis. Both antibacterial compounds 2 and 3 were found effective against all tested bacterial strains at different concentrations. But when these compounds were linked with efflux pump inhibitors, they showed dramatic enhancement in their bacterial cell killing potential and minimum inhibitory concentration of all hybrids ranging from 7.250 μg/mL to 0.05 μg/mL. These prepared hybrid drugs will be promising and effective new agents in the category of dual-action antibiotics.


Author(s):  
Utkalendu Suvendusekhar Samantaray ◽  
Swapnarani Sethi

A phytohormone is a molecule that controls the development of plants. Auxin and cytokines, which may be acquired as synthetic compounds or produced by microorganisms, which promote plant growth, are employed to enhance crop yield. Indole-3-Acetic Acid (IAA) is a key phytohormone that controls a number of physiological processes in plants. Indole-3-acetic acid (IAA), the most prevalent endogenous auxin, is involved in stem elongation and root formation. Auxin levels are usually higher in the rhizosphere. The possibility of rhizosphere bacteria to encourage direct plant development has been recognised as a crucial component of auxin (IAA) production. They promote the growth of lateral roots, which increases the surface area available for nutrition absorption and enhances nutrient and water absorption from the soil. The objective of this research is to isolate, characterise, and identify bacteria that produce indole acetic acid in rhizospheric soil. Bacterial colonies were isolated using the serial dillution technique on nutrient agar medium from rhizospheric soil samples of a rice crop. Five rhizospheric bacterial isolates (RIPB-1 to RIPB-30) were identified as effective Indole acetic acid makers after qualitative screening. The quantity of Indole acetic acid produced by five bacterial strains was tested for up to 120 hours. The amount of Indole acetic acid they could generate ranged from 1 to 11.2 g/ml. The bacterial strain RIPB-20 (11.2 g/ml) generated the highest Indole acetic acid after 72 hours of incubation, followed by RIPB-14. Based on morphological, physiological, and biochemical features, the bacterial isolate RIPB-20 was tentatively identified as Bacillus sp. Finally, the finding shows that the bacteria, which have capacity to produce Indole acetic acid, are good biofertilizer inoculants for growth of plant.


2021 ◽  
Author(s):  
Hezekiah Korir ◽  
Nancy W. Mungai ◽  
Victor W. Wasike

Abstract Use of phosphate solubilizing bacteria (PSB) and rhizobia can have a positive effect on the growth of common bean. This study aimed at determining the mechanisms of action of native bacterial strains; and to determine their effect in enhancing growth of common bean. The strains were screened for their ability to solubilize insoluble inorganic phosphates and production of indole acetic acid in vitro. A greenhouse experiment was set up to evaluate the response of common bean to inoculation with selected bacterial strains. Six of the bacterial isolates tested showed a positive result for IAA production. Rhizobium pusense showed the greatest solubilization efficiency of 648 followed by Bacillus megaterium (322.3) and Rhizobium phaseoli (308.7). Inoculation of common bean with Rhizobia and PSB had a significant effect on the number of nodules per plant. The highest shoot biomass was observed when Rhizobium phaseoli was co-inoculated with P. polymyxa (4.3g plant-1) compared to the single Rhizobium phaseoli inoculation (1.14 g plant-1). The shoot tissue nitrogen and phosphorous concentration was increased as a results of co-inoculation up to 32.5% and 75.4% respectively. Therefore, tested bacterial strains have great potential in being formulated and used as biofertilizers that can be evaluated under varying field conditions.


2019 ◽  
Vol 41 (4) ◽  
Author(s):  
Nguyen Ngoc Lan ◽  
Vu Van Dzung ◽  
Nguyen Thi Kim Lien ◽  
Nguyen Kim Thoa ◽  
Do Huu Nghi ◽  
...  

Beneficial plant-growth-promoting bacteria (PGPB) have been reasonably applied to rescue crucial issue for agriculture by salinity soil. Observed most of PGPB was found in endophyte, rhizosphere and soil. Indole acetic acid (IAA)-producing bacteria could naturally stimulate and facilitate plant growth. The knowledge of IAA production and content of bacteria resident in the marine environment has been typically insufficient and limited to date. In recent years, unwarrantable intrusions of sea water have been enlarged in the Mekong River Delta of Vietnam, threatening productive rice fields, local fruits, and cash crops. Therefore, finding PGPB in the coastal regions in the Mekong River Delta as a creative resource for sustainable agriculture is necessary and is a prompt challenge. In this study, IAA-producing bacteria from coastal regions of Ben Tre and Tra Vinh Provinces were isolated and adequately identified. Out of 202 bacterial isolates, 10 isolates showed the possible ability to produce IAA from L-tryptophan. These 10 isolates were objectively evaluated the capacity to produce IAA under 5% (w/v) NaCl in King B and marine broths. The results revealed that IAA production decreased in 5% NaCl, even though bacterial growth increased. These 10 IAA-producing bacteria were classified at the species level, Marinobacter hydrocarbonoclasticus, M. pelagius, M. daepoensis, and Mameliella phaeodactyli by 16S rRNA gene analysis. The most IAA producer in King’s B broth, the isolate C7, was investigated in more detail. The isolate C7 produced the maximum IAA amount (192.2 ± 1.14 µg/ml) under the presence of 20 g/l yeast extract, 2 g/l of L-tryptophan and 1% NaCl. The isolate C7 was able to grow at 1–17% (w/v) NaCl (optimum, 4%), but not in the absence of NaCl, indicating it is a moderate halophilic bacteria. This study highlighted the considerable ability to produce IAA of marine bacteria, which could be thoughtfully considered to use naturally as biofertilizers to promote plant growth in saline intrusion lands. 


Sign in / Sign up

Export Citation Format

Share Document