Using Geochemistry to Address H2S Production Risk due to Steam Injection in Oil Sands

Author(s):  
Claire Barroux ◽  
Violaine Lamoureux-Var
SPE Journal ◽  
2012 ◽  
Vol 17 (03) ◽  
pp. 680-686 ◽  
Author(s):  
Dharmeshkumar R. Gotawala ◽  
Ian D. Gates

Summary Full steam conformance along the well pair of the steam-assisted gravity-drainage (SAGD) oil-sands-recovery process is essential for high thermal efficiency. Conformance can be improved by controlling injection and production strategies to ensure that steam is delivered to target regions in the reservoir. Smart wells use interval-control valves (ICVs) that, conceptually, can be dynamically controlled to yield uniform steam injectivity along the well pair. Dynamic control algorithms, such as proportional-integral-derivative (PID) control and their associated controller parameters, have not yet been developed for the SAGD processes that use ICVs. One control strategy would be to control the interwell subcool temperature difference—that is, the difference between the steam-injection temperature and the produced-fluids temperature. If this temperature difference is small, then the liquid pool above the production well is small and there is a likelihood of live steam production from the chamber. On the other hand, if the difference is large, the pool may rise above the injection well and gravity drainage is hindered because the chamber is largely filled with liquid. Here, the focus is on developing a simple, approximate theory for the behavior of the liquid pool at the base of the steam chamber to determine the ranges of values of control parameters to achieve a targeted interwell subcool temperature difference.


2010 ◽  
Author(s):  
Weiqiang Li ◽  
Daulat D. Mamora

Abstract Steam Assisted Gravity Drainage (SAGD) is one successful thermal recovery technique applied in the Athabasca oil sands in Canada to produce the very viscous bitumen. Water for SAGD is limited in supply and expensive to treat and to generate steam. Consequently, we conducted a study into injecting high-temperature solvent instead of steam to recover Athabasca oil. In this study, hexane (C6) coinjection at condensing condition is simulated using CMG STARS to analyze the drainage mechanism inside the vapor-solvent chamber. The production performance is compared with an equivalent steam injection case based on the same Athabasca reservoir condition. Simulation results show that C6 is vaporized and transported into the vapor-solvent chamber. At the condensing condition, high temperature C6 reduces the viscosity of the bitumen more efficiently than steam and can displace out all the original oil. The oil production rate with C6 injection is about 1.5 to 2 times that of steam injection with oil recovery factor of about 100% oil initially-in-place. Most of the injected C6 can be recycled from the reservoir and from the produced oil, thus significantly reduce the solvent cost. Results of our study indicate that high-temperature solvent injection appears feasible although further technical and economic evaluation of the process is required.


1984 ◽  
Vol 24 (04) ◽  
pp. 417-430 ◽  
Author(s):  
Yoshiaki Ito

Ito, Yoshiaki, SPE, Gulf Canada Resources Inc. Abstract Historically, a vertical or horizontal fracture is believed to be a main recovery mechanism for a cyclic steam-injection process in unconsolidated oil sands. Most current computer process in unconsolidated oil sands. Most current computer models for the process are based on the fracture concept. With the postulated sand deformation concept, on the other hand, the injected fluid is able to penetrate the unconsolidated oil sand by creating micro channels. When the pore pressure is reduced during production, these secondary flow channels will collapse totally or partially. Condensed steam tends to sweep fluids where the bitumen had been heated and imparts mobility as a result of the injected hot fluid. Flow geometry of the new concept is described in this paper. The physical differences between the sand paper. The physical differences between the sand deformation zone and the no-deformation zone are also investigated. The three major differences between these two zones are porosity change, pressure level, and energy and flow characteristics resulting from the existence of micro channels. All these modifications were incorporated successfully into a conventional numerical thermal simulator. The new model provided an excellent match for all the field observations (steam-injection pressure, oil-and-water production rates, fluid production temperature, downhole production rates, fluid production temperature, downhole production pressure, and salinity changes) of a production pressure, and salinity changes) of a steam-stimulated well in an unconsolidated oil sand. The study indicates that the most important phenomenon for in-situ recovery of bitumen is the one-way-valve effect of the micro channels, which are opened during injection and closed during production. Introduction A physical interaction between the injected fluid and the reservoir formation is required to inject large volumes of steam into the oil sand formation. Until now, this physical interaction was believed to be a vertical or a physical interaction was believed to be a vertical or a horizontal fracture, depending on the strength of the directional stress. Many authors investigated and incorporated this concept into numerical thermal simulators and used it for history match and prediction studies. There are many difficulties in analyzing the actual performance of steam stimulated wells by means of the performance of steam stimulated wells by means of the fracture concept. Some of the evidence is extremely difficult or impossible to explain with the conventional fracture concept. A few of these problems are discussed later. I, therefore, have postulated a new flow geometry to achieve a realistic interpretation of well performances. The new flow geometry has been termed the "sand deformation concept." The well performance characteristics for the bitumen recovery process can be described more clearly with the new concept process can be described more clearly with the new concept than with the conventional fracture concept. Sand Deformation Concept Although unconsolidated oil sand might not behave like a consolidated rock under stress, fracturing is assumed to be an important mechanism in most mathematical models for in-situ recovery of bitumen by steam injection. Fig. 1 A shows this process when the horizontal fracture is assumed to be the main recovery mechanism. Injected steam and condensate are contained primarily in a thin fracture zone so the fluid accommodated in the fracture will leak off. The process is similar to a linear displacement of oil by hot fluid. With the sand deformation concept, on the other hand, the injected fluid is able to penetrate oil sand through the creation of micro channels. Fig. 1 B shows this process. Since the micro channeling is postulated in the new model, a significant amount of resident fluid, including oil and connate water, will remain around the well without contacting the injected fluid. The extra space required to create the channels may be obtained by overburden heaving. Therefore, overburden movement will control the directional orientation of the channel creation. The preferential directional orientation is likely to be created as a result of preferential overburden movement. preferential overburden movement. Fig. 2 shows the rough dimensions of the pressurized channeling envelope surrounding the well when approximately 10 000 m3 [353,147 cu ft] of cold water equivalent as steam was injected. The shape of the areal extension is determined from the strength of the overburden stresses. SPEJ p. 417


Environments ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 123
Author(s):  
Tim J. Arciszewski

Identifying and tracking the influence of industrial activities on streams and lakes is a priority for monitoring in Canada’s oil sands region (OSR). While differences in indicators are often found in waterbodies adjacent to mining facilities, the confounding influence of natural exposures to bitumen and other stressors can affect the identification of industrial effects. However, recent work suggests metrics of industrial activity at individual facilities, including production and fuel consumption, may be used in site-specific analyses to identify influence of the industry as a whole as well as individual operations. This study further examined the potential relationships between industrial and climatic variables on benthic communities from 13 streams and 4 lakes using publicly available data from the minable region and the Elastic Net (EN) variable selection technique. From the full set of possible industrial and climate variables, the EN commonly identified the negative influence of plant and fuel use of petroleum coke at the Suncor Basemine on benthic communities in streams and lakes. The fuel/plant use of petroleum coke at Suncor likely reflects the emission and regional deposition of delayed coke fly ash. Among the other industrial variables, crude bitumen production at Syncrude Mildred Lake and other facilities, steam injection rates, and petroleum coke stockpiling were also selected for some benthic invertebrate indices at some sites. Land disturbance metrics were also occasionally selected, but the analyses largely support the predominant influence of industrial facilities via (inferred) atmospheric pathways. While climate variables were also commonly selected by EN and follow-up work is needed, this study suggests that integrating industrial performance data into analyses of biota using a site-specific approach may have broad applicability in environmental monitoring in the OSR. More specifically, the approach used here may both resolve the long-standing challenge of natural confounding influences on monitoring the status of streams in the OSR and track the influence of industrial activities in biota below critical effect sizes.


1992 ◽  
Vol 114 (4) ◽  
pp. 261-266
Author(s):  
V. S. V. Rajan ◽  
R. Tipman

Bituminous froths produced from the water extraction of oil sands contain significant quantities of sand and water which must be removed prior to upgrading the bitumen to synthetic crude oil. This paper presents a summary of the study of a simple twostep process for removing most of the solid and water contaminants from the bituminous froth. Low-quality froths containing 10–30 percent bitumen at temperatures of 40–70°C were improved in quality to 50–60 percent bitumen by heating the raw froth to ~ 90°C and settling the product in a gravity settler. The gravity settling vessel incorporated unique features for the introduction of the hot froth into the vessel. Two types of froth heaters were tested: a column heater containing a structured grid packing which used live steam injection, and a shell and tube heat exchanger. Heat transfer data were obtained for both types of heaters in the range of froth flow conditions available in the pilot plant. There was no apparent difference between the two heating modes in terms of the froth quality improvement, but the direct contact heater had the benefit of deaerating the froth. Evaluation of the separation efficiency showed that the gravity separation vessel design performed very well, and hence was incorporated into a commercial froth cleaning plant design. The bitumen separation efficiency was the best for froths containing about 20 percent bitumen. There was no apparent improvement in the froth quality for froths containing over 65 percent bitumen.


Sign in / Sign up

Export Citation Format

Share Document