An Innovative Process to Unlock Heavy Oil Resources in a Highly Fractured Carbonate Field

2014 ◽  
Author(s):  
Salim S. Al-Salmi ◽  
Pedro Romero ◽  
Mohammed Al Balushi
2010 ◽  
Author(s):  
Mohamed Ahmed Samir ◽  
Wael Hassan ◽  
Maher Omara ◽  
Enas Thabet ◽  
Yosra Yousef Abugreen ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Albina Mukhametshina ◽  
Elena Martynova

Viscosity is a major obstacle in the recovery of low API gravity oil resources from heavy oil and bitumen reservoirs. While thermal recovery is usually considered the most effective method for lowering viscosity, for some reservoirs introducing heat with commonly implemented thermal methods is not recommended. For these types of reservoirs, electromagnetic heating is the recommended solution. Electromagnetic heating targets part of the reservoir instead of heating the bulk of the reservoir, which means that the targeted area can be heated up more effectively and with lower heat losses than with other thermal methods. Electromagnetic heating is still relatively new and is not widely used as an alternate or addition to traditional thermal recovery methods. However, studies are being conducted and new technologies proposed that could help increase its use. Therefore, the objective of this study is to investigate the recovery of heavy oil and bitumen reservoirs by electromagnetic heating through the review of existing laboratory studies and field trials.


2012 ◽  
Author(s):  
Eshragh Ghoodjani ◽  
Riaz Kharrat ◽  
Manouchehr Vossoughi ◽  
Seyed Hamed Bolouri

2006 ◽  
Vol 9 (02) ◽  
pp. 154-164 ◽  
Author(s):  
Mingzhe Dong ◽  
S.-S. Sam Huang ◽  
Keith Hutchence

Summary The methane pressure-cycling (MPC) process is an enhanced-oil-recovery (EOR) scheme intended for application in some heavy-oil reservoirs after termination of either primary or waterflood production. The essence of the process is the restoration of the solution-gas-drive mechanism. The restoration is accomplished by reinjecting an appropriate amount of solution gas (mainly methane) and then repressuring the gas back into solution by injecting water until approximate original reservoir pressure is reached. This, aside from the replacement of produced oil by water, recreates the primary-production conditions. This novel recovery technique is being developed to target the considerable portion of heavy-oil resources located in thin reservoirs. Primary and secondary methods have managed to recover at best 10% of the initial oil in place (IOIP). Heat losses to overburden and underburden or bottomwater zones make thermal methods unsuitable for thin reservoirs. Sandpack-flood tests in 30.5-cm (length) × 5.0-cm (diameter) sandpacks were carried out for oils with a range of dead-oil viscosities from 1700 to 5400 mPa.s. The results showed that the pressure-cycling process could create a favorable condition for recharged gas to contact the remaining oil in reservoirs. This restores the situation whereby substantial amounts of gas are in solution for further "primary" production. The effects on the efficiency of the MPC process of cycle termination strategy, oil viscosity, and mobile-water saturation were investigated. Simulations were conducted to investigate the MPC process in three heavy-oil reservoirs in Saskatchewan, Canada. The effects on the process of infill wells, oil viscosity, gas-injection rate, and the presence of wormholes in reservoirs were studied. Introduction Heavy oil in thick-pay reservoirs (i.e., >10 m) is commonly produced with thermal-recovery methods. These methods (steam injection and its variants) are generally not suitable for thin reservoirs because of heat losses to overburden and underburden or bottomwater zones (Fairfield and White 1982; Dyer et al. 1994). The world's large untapped oil resource remaining after recovery by conventional technology offers potential for exploitation by a suitably developed tertiary-recovery technique. For example, Saskatchewan accounts for 62% of Canada's total heavy-oil resources (Bowers and Drummond 1997), including 1.7 billion m3 of proved reserves and 3.7 billion m3 of probable reserves (Saskatchewan Energy and Mines 1998). Of the province's proven initial heavy oil in place, 97% is contained in reservoirs where the pay zone is less than 10 m, and 55% in reservoirs with a pay zone less than 5 m thick (Huang et al. 1987; Srivastava et al. 1993). Primary and secondary methods combined recover, on average, only about 7% of the proven IOIP (Saskatchewan Energy and Mines 1998). The incentive is strong for the development of appropriate EOR techniques that will maximize the recovery potential of and profitability from these thin heavy-oil reservoirs. Extensive literature is available on CO2, flue gas, and produced-gas injection for heavy-oil recovery, including slug displacement, water alternating gas (WAG), and cyclic (huff ‘n’ puff) processes (Huang et al. 1987; Srivastava et al. 1993, 1994, 1999; Srivastava and Huang 1997; Ma and Youngren 1994; Issever et al. 1993; Olenick et al. 1992). A comparative study of the oil-recovery behavior for a 14.1°API heavy oil with different injection gases (CO2, flue gas, and produced gas) showed that CO2 was the best-suited gas for EOR of heavy oils (Srivastava et al. 1999). Cyclic CO2 injection for heavy-oil recovery was tested in the field, and field case histories indicated that oil production was enhanced (Olenick et al. 1992). However, natural CO2 sources are not available to most oil reservoirs. The cost of CO2 capture from flue gas and other sources may range from U.S. $25 to $70/ton (Padamsey and Railton 1993). Produced gas is available in large quantities at a much lower cost. With this consideration, produced gas can be an economically effective agent for heavy-oil recovery by the cyclic-injection process.


Author(s):  
A.V. Osipov ◽  
◽  
A.O. Esaulov ◽  
M.V. Ibragimova ◽  
V.L. Terentiev ◽  
...  

2021 ◽  
pp. 107-132
Author(s):  
Hua Song ◽  
Jack Jarvis ◽  
Shijun Meng ◽  
Hao Xu ◽  
Zhaofei Li ◽  
...  

2018 ◽  
Author(s):  
Sanjeev Malik ◽  
Mohammed Al Balushi ◽  
Salim Al Salmi ◽  
Aamer Al Belushi ◽  
Faris Al Ismali ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document