Investigating the Effect of Improved Fracture Conductivity on Production Performance of Hydraulically Fractured Wells: Field-Case Studies and Numerical Simulations

2015 ◽  
Vol 54 (06) ◽  
pp. 442-449 ◽  
Author(s):  
Jianlei Sun ◽  
David Schechter
2021 ◽  
Author(s):  
Mohamed El Sgher ◽  
Kashy Aminian ◽  
Ameri Samuel

Abstract The objective of this study was to investigate the impact of the hydraulic fracturing treatment design, including cluster spacing and fracturing fluid volume on the hydraulic fracture properties and consequently, the productivity of a horizontal Marcellus Shale well with multi-stage fractures. The availability of a significant amount of advanced technical information from the Marcellus Shale Energy and Environment Laboratory (MSEEL) provided an opportunity to perform an integrated analysis to gain valuable insight into optimizing fracturing treatment and the gas recovery from Marcellus shale. The available technical information from a horizontal well at MSEEL includes well logs, image logs (both vertical and lateral), diagnostic fracture injection test (DFIT), fracturing treatment data, microseismic recording during the fracturing treatment, production logging data, and production data. The analysis of core data, image logs, and DFIT provided the necessary data for accurate prediction of the hydraulic fracture properties and confirmed the presence and distribution of natural fractures (fissures) in the formation. Furthermore, the results of the microseismic interpretation were utilized to adjust the stress conditions in the adjacent layers. The predicted hydraulic fracture properties were then imported into a reservoir simulation model, developed based on the Marcellus Shale properties, to predict the production performance of the well. Marcellus Shale properties, including porosity, permeability, adsorption characteristics, were obtained from the measurements on the core plugs and the well log data. The Quanta Geo borehole image log from the lateral section of the well was utilized to estimate the fissure distribution s in the shale. The measured and published data were utilized to develop the geomechnical factors to account for the hydraulic fracture conductivity and the formation (matrix and fissure) permeability impairments caused by the reservoir pressure depletion during the production. Stress shadowing and the geomechanical factors were found to play major roles in production performance. Their inclusion in the reservoir model provided a close agreement with the actual production performance of the well. The impact of stress shadowing is significant for Marcellus shale because of the low in-situ stress contrast between the pay zone and the adjacent zones. Stress shadowing appears to have a significant impact on hydraulic fracture properties and as result on the production during the early stages. The geomechanical factors, caused by the net stress changes have a more significant impact on the production during later stages. The cumulative gas production was found to increase as the cluster spacing was decreased (larger number of clusters). At the same time, the stress shadowing caused by the closer cluster spacing resulted in a lower fracture conductivity which in turn diminished the increase in gas production. However, the total fracture volume has more of an impact than the fracture conductivity on gas recovery. The analysis provided valuable insight for optimizing the cluster spacing and the gas recovery from Marcellus shale.


2021 ◽  
Author(s):  
Carolin Röding ◽  
Katerina Harvati ◽  
Matteo Scardovelli ◽  
Solange Rigard ◽  
Michela Leonardi ◽  
...  

Models pertaining to the antiquity and continuity of Eurasian human populations and their cultural traditions have been revised in recent years as a result of novel inter-disciplinary research. In this third installment of the DFG Center for Advanced Studies Series, experts provide new field case studies, reviews, and original research on bio-cultural connections in Eurasia since the Paleolithic.


2008 ◽  
Author(s):  
Daren Bulat ◽  
Yiyan Chen ◽  
Matthew Kevin Graham ◽  
Richard Peter Marcinew ◽  
Adegoke S. Adeogun ◽  
...  

2005 ◽  
Author(s):  
Shaharuddin Salleh ◽  
Albert Y. Zomaya ◽  
Stephan Olariu ◽  
Bahrom Sanugi

2021 ◽  
Author(s):  
Behjat Haghshenas ◽  
Farhad Qanbari

Abstract Recovery factor for multi-fractured horizontal wells (MFHWs) at development spacing in tight reservoirs is closely related to the effective horizontal and vertical extents of the hydraulic fractures. Direct measurement of pressure depletion away from the existing producers can be used to estimate the extent of the hydraulic fractures. Monitoring wells equipped with downhole gauges, DFITs from multiple new wells close to an existing (parent) well, and calculation of formation pressure from drilling data are among the methods used for pressure depletion mapping. This study focuses on acquisition of pressure depletion data using multi-well diagnostic fracture injection tests (DFITs), analysis of the results using reservoir simulation, and integration of the results with production data analysis of the parent well using rate-transient analysis (RTA) and reservoir simulation. In this method, DFITs are run on all the new wells close to an existing (parent) well and the data is analyzed to estimate reservoir pressure at each DFIT location. A combination of the DFIT results provides a map of pressure depletion around the existing well, while production data analysis of the parent well provides fracture conductivity and surface area and formation permeability. Furthermore, reservoir simulation is tuned such that it can also match the pressure depletion map by adjusting the system permeability and fracture geometry of the parent well. The workflow of this study was applied to two field case from Montney formation in Western Canadian Sedimentary Basin. In Field Case 1, DFIT results from nine new wells were used to map the pressure depletion away from the toe fracture of a parent well (four wells toeing toward the parent well and five wells in the same direction as the parent). RTA and reservoir simulation are used to analyze the production data of the parent well qualitatively and quantitatively. The reservoir model is then used to match the pressure depletion map and the production data of the parent well and the outputs of the model includes hydraulic fracture half-lengths on both sides of the parent well, formation permeability, fracture surface area and fracture conductivity. In Field Case 2, the production data from an existing well and DFIT result from a new well toeing toward the existing wells were incorporated into a reservoir simulation model. The model outputs include system permeability and fracture surface area. It is recommended to try the method for more cases in a specific reservoir area to get a statistical understanding of the system permeability and fracture geometry for different completion designs. This study provides a practical and cost-effective approach for pressure depletion mapping using multi-well DFITs and the analysis of the resulting data using reservoir simulation and RTA. The study also encourages the practitioners to take every opportunity to run DFITs and gather pressure data from as many well as possible with focus on child wells.


2021 ◽  
Author(s):  
Aymen Alhemdi ◽  
Ming Gu

Abstract Slickwater-sand fracturing design is widely employed in Marcellus shale. The slickwater- sand creates long skinny fractures and maximizes the stimulated reservoir volume (SRV). However, due to the fast settling of sand in the water, lots of upper and deeper areas are not sufficiently propped. Reducing sand size can lead to insufficient fracture conductivity. This study proposes to use three candidate ultra-lightweight proppants ULWPs to enhance the fractured well performance in unconventional reservoirs. In step 1, the current sand pumping design is input into an in-house P3D fracture propagation simulator to estimate the fracture geometry and proppant concentrations. Next, the distribution of proppant concentration converts to conductivity and then to fracture permeability. In the third step, the fracture permeability from the second step is input into a reservoir simulator to predict the cumulative production for history matching and calibration. In step 4, the three ULWPs are used to replace the sand in the frac simulator to get new frac geometry and conductivity distribution and then import them in reservoir model for production evaluation. Before this study, the three ULWPs have already been tested in the lab to obtain their long-term conductivities under in-situ stress conditions. The conductivity distribution and production performance are analyzed and investigated. The induced fracture size and location of the produced layer for the current target well play a fundamental effect on ultra-light proppant productivity. The average conductivity of ULWPs with mesh 40/70 is larger and symmetric along the fracture except for a few places. However, ULWPs with mesh 100 generates low average conductivity and create a peak conductivity in limited areas. The ULW-3 tends to have less cumulative production compared with the other ULWPs. For this Marcellus Shale study, the advantages of ultra-lightweight proppant are restricted and reduced because the upward fracture height growth is enormous. And with the presence of the hydrocarbon layer is at the bottom of the fracture, making a large proportion of ULWPs occupies areas that are not productive places. The current study provides a guidance for operators in Marcellus Shale to determine (1) If the ULWP can benefit the current shale well treated by sand, (2) what type of ULWP should be used, and (3) given a certain type of ULWP, what is the optimum pumping schedule and staging/perforating design to maximize the well productivity. The similar workflow can be expanded to evaluate the economic potential of different ULWPs in any other unconventional field.


Sign in / Sign up

Export Citation Format

Share Document