Pressure Depletion Mapping Using Multi-Well DFITs and its Applications in Hydraulic Fracture Characterization and Permeability Estimation: Examples from Montney Formation

2021 ◽  
Author(s):  
Behjat Haghshenas ◽  
Farhad Qanbari

Abstract Recovery factor for multi-fractured horizontal wells (MFHWs) at development spacing in tight reservoirs is closely related to the effective horizontal and vertical extents of the hydraulic fractures. Direct measurement of pressure depletion away from the existing producers can be used to estimate the extent of the hydraulic fractures. Monitoring wells equipped with downhole gauges, DFITs from multiple new wells close to an existing (parent) well, and calculation of formation pressure from drilling data are among the methods used for pressure depletion mapping. This study focuses on acquisition of pressure depletion data using multi-well diagnostic fracture injection tests (DFITs), analysis of the results using reservoir simulation, and integration of the results with production data analysis of the parent well using rate-transient analysis (RTA) and reservoir simulation. In this method, DFITs are run on all the new wells close to an existing (parent) well and the data is analyzed to estimate reservoir pressure at each DFIT location. A combination of the DFIT results provides a map of pressure depletion around the existing well, while production data analysis of the parent well provides fracture conductivity and surface area and formation permeability. Furthermore, reservoir simulation is tuned such that it can also match the pressure depletion map by adjusting the system permeability and fracture geometry of the parent well. The workflow of this study was applied to two field case from Montney formation in Western Canadian Sedimentary Basin. In Field Case 1, DFIT results from nine new wells were used to map the pressure depletion away from the toe fracture of a parent well (four wells toeing toward the parent well and five wells in the same direction as the parent). RTA and reservoir simulation are used to analyze the production data of the parent well qualitatively and quantitatively. The reservoir model is then used to match the pressure depletion map and the production data of the parent well and the outputs of the model includes hydraulic fracture half-lengths on both sides of the parent well, formation permeability, fracture surface area and fracture conductivity. In Field Case 2, the production data from an existing well and DFIT result from a new well toeing toward the existing wells were incorporated into a reservoir simulation model. The model outputs include system permeability and fracture surface area. It is recommended to try the method for more cases in a specific reservoir area to get a statistical understanding of the system permeability and fracture geometry for different completion designs. This study provides a practical and cost-effective approach for pressure depletion mapping using multi-well DFITs and the analysis of the resulting data using reservoir simulation and RTA. The study also encourages the practitioners to take every opportunity to run DFITs and gather pressure data from as many well as possible with focus on child wells.

2021 ◽  
Author(s):  
Ahmed Farid Ibrahim ◽  
Mazher Ibrahim ◽  
Matt Sinkey ◽  
Thomas Johnston ◽  
Wes Johnson

Abstract Multistage hydraulic fracturing is the common stimulation technique for shale formations. The treatment design, formation in-situ stress, and reservoir heterogeneity govern the fracture network propagation. Different techniques have been used to evaluate the fracture geometry and the completion efficiency including Chemical Tracers, Microseismic, Fiber Optics, and Production Logs. Most of these methods are post-fracture as well as time and cost intensive processes. The current study presents the use of fall-off data during and after stage fracturing to characterize producing surface area, permeability, and fracture conductivity. Shut-in data (15-30 minutes) was collected after each stage was completed. The fall-off data was processed first to remove the noise and water hammer effects. Log-Log derivative diagnostic plots were used to define the flow regime and the data were then matched with an analytical model to calculate producing surface area, permeability, and fracture conductivity. Diagnostic plots showed a unique signature of flow regimes. A long period of a spherical flow regime with negative half-slope was observed as an indication for limited entry flow either vertically or horizontally. A positive half-slope derivative represents a linear flow regime in an infinitely conductive tensile fracture. The quarter-slope derivative was observed in a bilinear flow regime that represents a finite conductivity fracture system. An extended radial flow regime was observed with zero slope derivative which represents a highly shear fractured network around the wellbore. For a long fall-off period, formation recharge may appear with a slope between unit and 1.5 slopes derivative, especially in over-pressured dry gas reservoirs. Analyzing fall-off data after stages are completed provides a free and real-time investigation method to estimate the fracture geometry and a measure of completion efficiency. Knowing the stage properties allows the reservoir engineer to build a simulation model to forecast the well performance and improve the well spacing.


2013 ◽  
Vol 53 (1) ◽  
pp. 355 ◽  
Author(s):  
Luiz Bortolan Neto ◽  
Aditya Khanna ◽  
Andrei Kotousov

A new approach for evaluating the performance of hydraulic fractures that are partially packed with proppant (propping agent) particles is presented. The residual opening of the partially propped fracture is determined as a function of the initial fracture geometry, the propped length of the fracture, the compressive rock stresses, the elastic properties of the rock, and the compressibility of the proppant pack. A mathematical model for fluid flow towards the fracture is developed, which incorporates the effects of the residual opening profile of the fracture and the high conductivity of the unpropped fracture length. The residual opening profile of the fracture is calculated for a particular case where the proppant pack is nearly rigid and there is no closure of the fracture faces due to the confining (compressive) stresses. A sensitivity study is performed to demonstrate the dependence of the well productivity index on the propped length of the fracture, the proppant pack permeability, and the dimensionless fracture conductivity. The sensitivity study suggests that the residual opening of a fracture has a significant impact on production, and that partially propped fractures can be more productive than fully propped fractures. Application of this new approach can lead to economic benefits.


SPE Journal ◽  
2018 ◽  
Vol 24 (03) ◽  
pp. 1248-1269 ◽  
Author(s):  
Xu Xue ◽  
Changdong Yang ◽  
Jaeyoung Park ◽  
Vishal Kumar Sharma ◽  
Akhil Datta-Gupta ◽  
...  

Summary Multistage hydraulically fractured horizontal wells provide an effective means to exploit unconventional reservoirs. The current industry practice in the interpretation of field response often uses empirical decline-curve analysis or pressure-transient analysis/rate-transient analysis (PTA/RTA) for characterization of these reservoirs and fractures. These analytical tools depend on simplifying assumptions and do not provide a detailed description of the evolving reservoir-drainage volume accessed from a well. Understanding of the transient-drainage volume is essential for unconventional-reservoir and fracture assessment and optimization. In our previous study (Yang et al. 2015), we developed a “data-driven” methodology for the production rate and pressure analysis of shale-gas and shale-oil reservoirs. There are no underlying assumptions of fracture geometry, reservoir homogeneity, and flow regimes in the method proposed in our previous study. This approach depends on the high-frequency asymptotic solution of the diffusivity equation in heterogeneous reservoirs. It allows us to determine the well-drainage volume and the instantaneous recovery ratio (IRR), which is the ratio of the produced volume to the drainage volume, directly from the production data. In addition, a new w(τ) plot has been proposed to provide better insight into the depletion mechanisms and the fracture geometry. w(τ) is the derivative of pore volume with respect to τ. In this paper, we build upon our previous approach to propose a novel diagnostic tool for the interpretation of the characteristics of (potentially) complex fracture systems and drainage volume. We have used the w(τ) and IRR plots for the identification of characteristic signatures that imply complex fracture geometry, formation linear flow, partial reservoir completions, and fracture-interference/compaction effects during production. The w(τ) analysis gives us the fracture surface area and formation diffusivity, while the IRR analysis provides additional information on fracture conductivity. In addition, quantitative analysis is conducted using the novel w(τ) plot to interpret fracture-interference time, formation permeability, total fracture surface area, and stimulated reservoir volume (SRV). The major advantages of this current approach are the model-free analysis without assuming planar fractures, homogeneous formation properties, and specific flow regimes. In addition, the w(τ) plot captures high-resolution flow patterns not observed in traditional PTA/RTA analysis. The analysis leads to a simple and intuitive understanding of the transient-drainage volume and fracture conductivity. The results of the analysis are useful for hydraulic-fracturing-design optimization and matrix- and fracture-parameter estimation.


2022 ◽  
Author(s):  
Cornelis Adrianus Veeken ◽  
Yousuf Busaidi ◽  
Amira Hajri ◽  
Ahmed Mohammed Hegazy ◽  
Hamyar Riyami ◽  
...  

Abstract PDO operates about 200 deep gas wells in the X field in the Sultanate of Oman, producing commingled from the Barik gas-condensate and Miqrat lean gas reservoir completed by multiple hydraulic fracturing. Their inflow performance relation (IPR) is tracked to diagnose condensate damage, hydraulic fracture cleanup and differential reservoir pressure depletion. The best IPR data is collected through multi-rate production logging but surface production data serves as an alternative. This paper describes the process of deriving IPR's from production logging and surface production data, and then evaluates 20 years of historic IPR data to quantify the impact of condensate damage and condensate cleanup with progressive reservoir pressure depletion, to demonstrate the massive damage and slow cleanup of hydraulic fractures placed in depleted reservoirs, to show how hydraulic fractures facilitate the vertical cross-flow between isolated reservoir intervals, and to highlight that stress-dependent permeability does not play a major role in this field.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1938 ◽  
Author(s):  
Xu Yang ◽  
Boyun Guo ◽  
Xiaohui Zhang

Fracture conductivity decline is a concern in the Tuscaloosa Marine Shale (TMS) wells due to the high content of clay in the shale. An analytical well productivity model was developed in this study considering the pressure-dependent conductivity of hydraulic fractures. The log-log diagnostic approach was used to identify the boundary-dominated flow regime rather than the linear flow regime. Case studies of seven TMS wells indicated that the proposed model allows approximation of the field data with good accuracy. Production data analyses with the model revealed that the pressure-dependent fracture conductivity in the TMS in the Mississippi section declines following a logarithmic mode, with dimensionless coefficient χ varying between 0.116 and 0.130. The pressure-dependent decline of fracture conductivity in the transient flow period is more significant than that in the boundary-dominated flow period.


2021 ◽  
Vol 200 ◽  
pp. 108377
Author(s):  
Bing Kong ◽  
Zhuoheng Chen ◽  
Shengnan Chen ◽  
Tianjie Qin

Sign in / Sign up

Export Citation Format

Share Document