scholarly journals Correcting Oil/Water Relative Permeability Data for Capillary End Effect in Displacement Experiments

Author(s):  
S. Qadeer ◽  
K. Dehghani ◽  
D.O. Ogbe ◽  
R.D. Ostermann
SPE Journal ◽  
2019 ◽  
Vol 24 (03) ◽  
pp. 1234-1247 ◽  
Author(s):  
Shuangmei Zou ◽  
Ryan T. Armstrong

Summary Wettability is a major factor that influences multiphase flow in porous media. Numerous experimental studies have reported wettability effects on relative permeability. Laboratory determination for the impact of wettability on relative permeability continues to be a challenge because of difficulties with quantifying wettability alteration, correcting for capillary-end effect, and observing pore-scale flow regimes during core-scale experiments. Herein, we studied the impact of wettability alteration on relative permeability by integrating laboratory steady-state experiments with in-situ high-resolution imaging. We characterized wettability alteration at the core scale by conventional laboratory methods and used history matching for relative permeability determination to account for capillary-end effect. We found that because of wettability alteration from water-wet to mixed-wet conditions, oil relative permeability decreased while water relative permeability slightly increased. For the mixed-wet condition, the pore-scale data demonstrated that the interaction of viscous and capillary forces resulted in viscous-dominated flow, whereby nonwetting phase was able to flow through the smaller regions of the pore space. Overall, this study demonstrates how special-core-analysis (SCAL) techniques can be coupled with pore-scale imaging to provide further insights on pore-scale flow regimes during dynamic coreflooding experiments.


2021 ◽  
Vol 14 (04) ◽  
pp. 259-267
Author(s):  
I. C. A. B. A. Santos ◽  
F. M. Eler ◽  
D. S. S. Nunes ◽  
P. Couto

Relative permeability curves obtained in laboratory are used in reservoir simulators to predict production and establish the best strategies for an oil field. Therefore, researchers study several procedures to obtain relative permeability curves. Among these procedures are the multiple flow rates injection methods. Thus, this work proposes to develop an experimental procedure with multiple increasing flows. To make this feasible, simulations were initially carried out at CYDAR, aiming to establish flow rates and time necessary to achieve system stabilization, within the limits of the equipment. After that, tests were carried out establishing the minimum time of 5 hours to stabilize the oil production, and the differential pressure at each flow rate. The accounting and minimization of the capillary end effect in these tests were also evaluated. Capillary pressure constraints contributed to minimize the number of possible solutions to the optimization problem improving the fit of solutions for a specific case.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4528
Author(s):  
Yanyan Li ◽  
Shuoliang Wang ◽  
Zhihong Kang ◽  
Qinghong Yuan ◽  
Xiaoqiang Xue ◽  
...  

Relative permeability curve is a key factor in describing the characteristics of multiphase flow in porous media. The steady-state method is an effective method to measure the relative permeability curve of oil and water. The capillary discontinuity at the end of the samples will cause the capillary end effect. The capillary end effect (CEE) affects the flow and retention of the fluid. If the experimental design and data interpretation fail to eliminate the impact of capillary end effects, the relative permeability curve may be wrong. This paper proposes a new stability factor method, which can quickly and accurately correct the relative permeability measured by the steady-state method. This method requires two steady-state experiments at the same proportion of injected liquid (wetting phase and non-wetting phase), and two groups of flow rates and pressure drop data are obtained. The pressure drop is corrected according to the new relationship between the pressure drop and the core length. This new relationship is summarized as a stability factor. Then the true relative permeability curve that is not affected by the capillary end effect can be obtained. The validity of the proposed method is verified against a wide range of experimental results. The results emphasize that the proposed method is effective, reliable, and accurate. The operation steps of the proposed method are simple and easy to apply.


2021 ◽  
Vol 5 (1) ◽  

The relative permeability curves obtained in the laboratory are used in reservoir simulators to predict production and decide the best strategies for an oil field. Therefore, researchers are studying several procedures to obtain relative permeability curves, among them the multiple flow rates injection methods. Thus, this work proposes to develop an experimental procedure with multiple increasing flows (multi-step). To make this feasible, simulations were initially carried out at CYDAR, aiming to establish the flow rates and necessary the time to system stabilization, within the limits of the equipment. After that, the tests were carried out and the results obtained were the minimum time of 5 hours to stabilize the oil production and the differential pressure at each flow rate. The accounting and minimization of the capillary end effect in these tests were also evaluated. And the capillary pressure constraints contributed to minimize the number of possible solutions of the optimization problem improving the uniqueness of solution.


Sign in / Sign up

Export Citation Format

Share Document