Equation of State Coupled Predictive Viscosity Model for Bitumen Solvent-Thermal Recovery

Author(s):  
Mingxu Ma ◽  
Shengnan Chen ◽  
Jalal Abedi
2021 ◽  
Vol 530 ◽  
pp. 112896 ◽  
Author(s):  
Yash Khemka ◽  
Caleb J. Sisco ◽  
Mohammed I.L. Abutaqiya ◽  
Walter G. Chapman ◽  
Francisco M. Vargas

1987 ◽  
Vol 54 (3) ◽  
pp. 532-538 ◽  
Author(s):  
M. B. Rubin

Specific constitutive equations are proposed for a material exhibiting isotropic-elastic response in its reference configuration, strain-rate, temperature and density dependent plastic flow with isotropic and directional hardening, and thermal recovery of hardening. The shear modulus is temperature and density dependent and it vanishes when the temperature reaches the density dependent melting temperature. These equations include modifications, relative to those proposed by Rubin (1986), which are appropriate to describe metals subjected to high compression. The constitutive functions characterizing pressure are determined by comparison with a Mie-Gru¨neisen equation of state which includes functions that are obtained from common shock-wave experiments. To examine some of the features of these equations at high compression we consider an example of homogeneous uniaxial strain and show that the deviatoric stress may be quite large at ultra high compression rates and high compression.


1981 ◽  
Vol 21 (05) ◽  
pp. 535-550 ◽  
Author(s):  
S.T. Lee ◽  
R.H. Jacoby ◽  
W.H. Chen ◽  
W.E. Culham

Abstract Experimental phase equilibrium data are presented for three reservoir oils at conditions approximating those encountered in in-situ thermal recovery processes. The fluid systems involved consist of three major groups of components: flue gas, water, and crude oil. Data were measured at temperatures from 204.4 to 371.1°C (400 to 700°F) and pressures from 6996.0 to 20785.6 kPa (1,000 to 3,000 psia). Experimental phase equilibrium data were used to develop a correlation of binary interaction coefficients of crude-oil fractions required for the Peng-Robinson equation of state. Phase equilibrium data predicted using the Peng-Robinson equation of state, using our interaction coefficients, are compared with experimental data. Generally, the Peng-Robinson equation of state predictions were in close agreement with the experimental data. Effect of feed gas/oil ratio and water/oil ratio on the equilibrium coefficients was examined through the Peng-Robinson equation of state. A study on the feasibility of representing the crude oil by only two fractions was made also. This study includes a procedure for lumping the crude-oil fractions and examples showing the importance of mixing rules in determining the pseudo critical properties of lumped fractions. Introduction The steady growth of commercial thermal recovery processes1 has created a need for basic data on phase equilibria that involve water and hydrocarbons ranging from methane to high boiling-point fractions. The in-situ thermal recovery processes often are operated at pressures above 6800 kPa (1,000 psia) and temperatures above 200°C (400°F). Experimental data and theoretical correlations on phase equilibria approximating these systems are virtually nonexistent. Early work by White and Brown2 dealt with high boiling-point hydrocarbon phase equilibria. However, the highest pressure studied was 6894.8 kPa (1,000 psia) and the lightest component was pentane. Poettmann and Mayland,3 on the basis of an empirical correlation,4 constructed charts of equilibrium coefficients, or K values, as functions of pressure and temperature for various boiling-point fractions. But the maximum pressure studied was 6894.8 kPa (1,000 psia). Later, Hoffmann et al.5 studied phase behavior of a gas-condensate system with the highest pressure reaching 20 684.3 kPa (3,000 psia) but the highest temperature investigated was only 94.2°C (201°F). In 1963, Grayson and Streed6 reported experimental vapor/liquid equilibrium data for high-temperature and high-pressure hydrocarbon systems. They also extended the Chao-Seader correlation to cover the higher temperature ranges. However, the. major light component in Grayson and Streed's system was hydrogen. Recently, because of the increasing activity in carbon dioxide flooding processes, the phase equilibria of systems involving carbon dioxide and crude oil has received attention. Simon et al.7 studied phase behavior and other properties of carbon-dioxide/reservoir-oil systems. Shelton and Yarborough8 examined phase behavior in porous media during carbon dioxide or rich-gas flooding. No extensive data on equilibrium coefficients were reported in those papers, and the temperature ranges (out of physical reality) were below 93.5°C (200°F). None of these papers surveyed included water as a component.


2003 ◽  
Vol 210 (2) ◽  
pp. 319-334 ◽  
Author(s):  
Ricardo Macı́as-Salinas ◽  
Fernando Garcı́a-Sánchez ◽  
Gaudencio Eliosa-Jiménez

AIChE Journal ◽  
2006 ◽  
Vol 52 (4) ◽  
pp. 1600-1610 ◽  
Author(s):  
Sergio E. Quiñones-Cisneros ◽  
Claus K. Zéberg-Mikkelsen ◽  
Josefa Fernández ◽  
Josefa García

SPE Journal ◽  
2019 ◽  
Vol 25 (03) ◽  
pp. 1070-1081
Author(s):  
Pooya Khodaparast ◽  
Russell T. Johns

Summary Surfactant floods can attain high oil recovery if optimal conditions with ultralow interfacial tensions (IFT) are achieved in the reservoir. A recently developed equation-of-state (EoS) phase-behavior net-average-curvature (NAC) model based on the hydrophilic-lipophilic difference (HLD-NAC) has been shown to fit and predict phase-behavior data continuously throughout the Winsor I, II, III, and IV regions. The state-of-the-art for viscosity estimation, however, uses empirical nonpredictive based on of fits to salinity scans, even though other parameters change, such as the phase number and compositions. In this paper, we develop the first-of-its-kind microemulsion viscosity model that gives continuous viscosity estimates in composition space. This model is coupled to our existing HLD-NAC phase-behavior EoS. The results show that experimentally measured viscosities in all Winsor regions (two- and three-phase) are a function of phase composition, temperature, pressure, salinity, and the equivalent alkane carbon number (EACN). More specifically, microemulsion viscosities associated with the three-phase invariant point have an M shape as formulation variables change, such as from a salinity scan. The location and magnitude of viscosity peaks in the M are predicted from two percolation thresholds after tuning to viscosity data. These percolation thresholds as well as other model parameters change linearly with EACN and brine salinity. We also show that the minimum viscosity in the M shape correlates linearly with EACN or the viscosity ratio. Other key parameters in the model are also shown to linearly correlate with the EACN and brine salinity. On the basis of these correlations, two- and three-phase microemulsion viscosities are determined in five-component space (surfactant, two brine components, and two oil components) independent of flash calculations. Phase compositions from the EoS flash calculations are entered into the viscosity model. Fits to experimental data are excellent, as well as viscosity predictions for salinity scans not used in the fitting process.


Sign in / Sign up

Export Citation Format

Share Document