A Continuous and Predictive Viscosity Model Coupled to a Microemulsion Equation of State

SPE Journal ◽  
2019 ◽  
Vol 25 (03) ◽  
pp. 1070-1081
Author(s):  
Pooya Khodaparast ◽  
Russell T. Johns

Summary Surfactant floods can attain high oil recovery if optimal conditions with ultralow interfacial tensions (IFT) are achieved in the reservoir. A recently developed equation-of-state (EoS) phase-behavior net-average-curvature (NAC) model based on the hydrophilic-lipophilic difference (HLD-NAC) has been shown to fit and predict phase-behavior data continuously throughout the Winsor I, II, III, and IV regions. The state-of-the-art for viscosity estimation, however, uses empirical nonpredictive based on of fits to salinity scans, even though other parameters change, such as the phase number and compositions. In this paper, we develop the first-of-its-kind microemulsion viscosity model that gives continuous viscosity estimates in composition space. This model is coupled to our existing HLD-NAC phase-behavior EoS. The results show that experimentally measured viscosities in all Winsor regions (two- and three-phase) are a function of phase composition, temperature, pressure, salinity, and the equivalent alkane carbon number (EACN). More specifically, microemulsion viscosities associated with the three-phase invariant point have an M shape as formulation variables change, such as from a salinity scan. The location and magnitude of viscosity peaks in the M are predicted from two percolation thresholds after tuning to viscosity data. These percolation thresholds as well as other model parameters change linearly with EACN and brine salinity. We also show that the minimum viscosity in the M shape correlates linearly with EACN or the viscosity ratio. Other key parameters in the model are also shown to linearly correlate with the EACN and brine salinity. On the basis of these correlations, two- and three-phase microemulsion viscosities are determined in five-component space (surfactant, two brine components, and two oil components) independent of flash calculations. Phase compositions from the EoS flash calculations are entered into the viscosity model. Fits to experimental data are excellent, as well as viscosity predictions for salinity scans not used in the fitting process.

SPE Journal ◽  
2017 ◽  
Vol 23 (03) ◽  
pp. 819-830 ◽  
Author(s):  
V. A. Torrealba ◽  
R. T. Johns

Summary Surfactant-based enhanced oil recovery (EOR) is a promising technique because of surfactant's ability to mobilize previously trapped oil by significantly reducing capillary forces at the pore scale. However, the field-implementation of these techniques is challenged by the high cost of chemicals, which makes the margin of error for the deployment of such methods increasingly narrow. Some commonly recognized issues are surfactant adsorption, surfactant partitioning to the excess phases, thermal and physical degradation, and scale-representative phase behavior. Recent contributions to the petroleum-engineering literature have used the hydrophilic/lipophilic-difference net-average-curvature (HLD-NAC) model to develop a phase-behavior equation of state (EoS) to fit experimental data and predict phase behavior away from tuned data. The model currently assumes spherical micelles and constant three-phase correlation length, which may yield errors in the bicontinuous region where micelles transition into cylindrical and planar shapes. In this paper, we introduce a new empirical phase-behavior model that is based on chemical-potential (CP) trends and HLD that eliminates NAC so that spherical micelles and the constant three-phase correlation length are no longer assumed. The model is able to describe all two-phase regions, and is shown to represent accurately experimental data at fixed composition and changing HLD (e.g., a salinity scan) as well as variable-composition data at fixed HLD. Further, the model is extended to account for surfactant partitioning into the excess phases. The model is benchmarked against experimental data (considering both pure-alkane and crude-oil cases), showing excellent fits and predictions for a wide variety of experiments, and is compared to the recently developed HLD-NAC EoS model for reference.


SPE Journal ◽  
2016 ◽  
Vol 21 (04) ◽  
pp. 1106-1125 ◽  
Author(s):  
S.. Ghosh ◽  
R. T. Johns

Summary Surfactant/polymer (SP) floods have significant potential to recover waterflood residual oil in shallow oil reservoirs. A thorough understanding of surfactant/oil/brine-phase behavior is critical to design SP-flood processes. Current practices involve repetitive laboratory experiments of dead crude at atmospheric pressure in a salinity scan that aims at finding an “optimum formulation” of chemicals for targeted oil reservoirs. Although considerable progress has been made in developing surfactants and polymers that increase the potential of a chemical enhanced-oil-recovery (EOR) project, very little progress has been made to predict phase behavior as a function of formulation variables such as pressure, temperature, and oil equivalent alkane carbon number (EACN). The empirical Hand (1930) plot is still used today to model the microemulsion-phase behavior with little predictive capability because these and other formulation variables change. Such models could lead to incorrect recovery predictions and improper SP-flood designs. In this research, we develop a new predictive-phase-behavior model and introduce a new factor β to account for pressure changes in the HLD equation. This new HLD equation is coupled with the net-average-curvature (NAC) model to predict phase volumes, solubilization ratios, and microemulsion-phase transitions (Winsor II–, Winsor III, and Winsor II+). The predictions of key parameters are compared with experimental data and are within relative errors of 4% (average 2.35%) for measured optimum salinities and 17% (average 10.55%) for optimum solubilization ratios. This paper is the first to use the HLD/NAC model to predict microemulsion-phase behavior for live crudes, including optimal solubilization ratio and the salinity width of the three-phase Winsor III region at different temperatures and pressures. Although the effect of pressure variations on microemulsion-phase behavior is generally thought to be small compared with temperature-induced changes, we show here that this is not necessarily the case. The predictive approach relies on tuning the model to limited experimental data (such as at atmospheric pressure) similar to what is performed for equation-of-state (EOS) modeling of miscible gasfloods. This new EOS-like model could significantly aid the design of chemical floods where key variables change dynamically, and in screening of potential candidate reservoirs for chemical EOR.


SPE Journal ◽  
2018 ◽  
Vol 24 (02) ◽  
pp. 647-659 ◽  
Author(s):  
V. A. Torrealba ◽  
R. T. Johns ◽  
H.. Hoteit

Summary An accurate description of the microemulsion-phase behavior is critical for many industrial applications, including surfactant flooding in enhanced oil recovery (EOR). Recent phase-behavior models have assumed constant-shaped micelles, typically spherical, using net-average curvature (NAC), which is not consistent with scattering and microscopy experiments that suggest changes in shapes of the continuous and discontinuous domains. On the basis of the strong evidence of varying micellar shape, principal micellar curves were used recently to model interfacial tensions (IFTs). Huh's scaling equation (Huh 1979) also was coupled to this IFT model to generate phase-behavior estimates, but without accounting for the micellar shape. In this paper, we present a novel microemulsion-phase-behavior equation of state (EoS) that accounts for changing micellar curvatures under the assumption of a general-prolate spheroidal geometry, instead of through Huh's equation. This new EoS improves phase-behavior-modeling capabilities and eliminates the use of NAC in favor of a more-physical definition of characteristic length. Our new EoS can be used to fit and predict microemulsion-phase behavior irrespective of IFT-data availability. For the cases considered, the new EoS agrees well with experimental data for scans in both salinity and composition. The model also predicts phase-behavior data for a wide range of temperature and pressure, and it is validated against dynamic scattering experiments to show the physical significance of the approach.


Author(s):  
A. M. Makasheva ◽  

A detailed development of a hierarchical cluster-associate mathematical viscosity model is shown. The model is based on the equilibrium Boltzmann’s distribution and, therefore, is regarded as a chaosensitive property of a fluid inherent in it not only in motion but also at rest. In this model, the key characteristics are chaotic thermal barriers at the melting and boiling points, in connection with which the behavior of a liquid is determined by the action of three energy classes of particles – crystal-mobile, liquid-mobile, and vapor-mobile. An important single indicator in the new model depends on temperature and makes sense of the degree of association of clusters of crystal-mobile particles. The assignment of the activation energy of the viscous flow of melts determined by the Frenkel’s equation to the degree of cluster association gives a constant value commensurate with the binding energy of the van der Waals particle attractive forces. On this basis, the authors hypothesized that a viscous flow occurs due to the destruction of cluster associates while preserving the clusters themselves. To adapt the cluster-associate model to experimental data, certain data processing techniques have been developed to identify unknown model parameters. All calculations are illustrated on liquid lithium and have shown their high adequacy. Also added is a method for processing viscosity data using the entire set of viscosity data while maintaining two reference points and processing the rest to determine the degree of aggregation of associates.


SPE Journal ◽  
2017 ◽  
Vol 22 (05) ◽  
pp. 1424-1436 ◽  
Author(s):  
Luchao Jin ◽  
Zhitao Li ◽  
Ahmad Jamili ◽  
Mohannad Kadhum ◽  
Jun Lu ◽  
...  

Summary Microemulsion phase behavior is crucial to surfactant flooding performance and design. In previous studies, analytical/numerical solutions for surfactant flooding were developed dependent on the classical theory of multicomponent/multiphase displacement and empirical microemulsion phase-behavior models. These phase-behavior models were derived from empirical correlations for component-partition coefficients or from the Hand-rule model (Hand 1930), which empirically represents the ternary-phase diagram. These models may lack accuracy or predictive abilities, which may lead to improper formulation design or unreliable recovery predictions. To provide a more-insightful understanding of the mechanisms of surfactant flooding, we introduced a novel microemulsion phase-behavior equation of state (EOS) dependent on the hydrophilic/lipophilic-difference (HLD) equation and the net-average curvature (NAC) model, which is called HLD-NAC EOS hereafter. An analytical model for surfactant flooding was developed dependent on coherence theory and this novel HLD-NAC EOS for two-phase three-component displacement. Composition routes, component profile along the core, and oil recovery can be determined from the analytical solution. The analytical solution was validated against numerical simulation as well as experimental study. This HLD-NAC EOS based analytical solution enables a systematic study of the effects of phase-behavior-dependent variables on surfactant-flooding performance. The effects of solution gas and pressure on microemulsion phase behavior were investigated. It was found that an increase of solution gas and pressure would lead to enlarged microemulsion bank and narrowed oil bank. For a surfactant formulation designed at standard conditions, the analytical solution was able to quantitatively predict its performance under reservoir conditions.


SPE Journal ◽  
2016 ◽  
Vol 22 (02) ◽  
pp. 470-479 ◽  
Author(s):  
Saeid Khorsandi ◽  
Changhe Qiao ◽  
Russell T. Johns

Summary A compositional reservoir simulator that uses a predictive microemulsion phase-behavior model is essential for accurate estimation of oil recovery from surfactant/polymer (SP) floods. Current chemical-flooding simulators, however, use Hand's model (Hand 1939) for phase-behavior calculation. Hand's model can reasonably fit a limited set of experimental data, such as those of a salinity scan, but because it is empirical, it cannot predict phase behavior outside the matched data set. Hydrophyllic/lypophyllic difference (HLD) and net-average-curvature (NAC) equation of state (EOS) (Acosta et al. 2003) has shown great performance for tuning and prediction of experimental data. In this paper, the EOS model with the extension to two-phase regions has been incorporated for the first time into UTCHEM (2000) and our in-house general-purpose compositional simulator, PennSim (2013). All Winsor regions (Type II−, II+, III, and IV) are modeled by use of a consistent physics-based EOS model without the need for Hand's approach. The new simulator is therefore able to account correctly for gridblock properties, which can vary temporally and spatially, and significantly improve the modeling of phase behavior and oil recovery. The results show excellent agreement between UTCHEM and PennSim both in composition space and for composition/saturation profiles for the 1D simulation. The effects of varying pressure, temperature, equivalent alkane carbon number (EACN), and salinity on recoveries are demonstrated also in 1D simulations.


Author(s):  
Md. Hamidul Kabir ◽  
Ravshan Makhkamov ◽  
Shaila Kabir

The solution properties and phase behavior of ammonium hexylene octyl succinate (HOS) was investigated in water and water-oil system. The critical micelle concentration (CMC) of HOS is lower than that of anionic surfactants having same carbon number in the lipophilic part. The phase diagrams of a water/ HOS system and water/ HOS/ C10EO8/ dodecane system were also constructed. Above critical micelle concentration, the surfactant forms a normal micellar solution (Wm) at a low surfactant concentration whereas a lamellar liquid crystalline phase (La) dominates over a wide region through the formation of a two-phase region (La+W) in the binary system. The lamellar phase is arranged in the form of a biocompatible vesicle which is very significant for the drug delivery system. The surfactant tends to be hydrophilic when it is mixed with C10EO8 and a middle-phase microemulsion (D) is appeared in the water-surfactant-dodecane system where both the water and oil soluble drug ingredient can be incorporated in the form of a dispersion. Hence, mixing can tune the hydrophile-lipophile properties of the surfactant. Key words: Ammonium hexylene octyl succinate, mixed surfactant, lamellar liquid crystal, middle-phase microemulsion. Dhaka Univ. J. Pharm. Sci. Vol.3(1-2) 2004 The full text is of this article is available at the Dhaka Univ. J. Pharm. Sci. website


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ilyas Al-Kindi ◽  
Tayfun Babadagli

AbstractThe thermodynamics of fluids in confined (capillary) media is different from the bulk conditions due to the effects of the surface tension, wettability, and pore radius as described by the classical Kelvin equation. This study provides experimental data showing the deviation of propane vapour pressures in capillary media from the bulk conditions. Comparisons were also made with the vapour pressures calculated by the Peng–Robinson equation-of-state (PR-EOS). While the propane vapour pressures measured using synthetic capillary medium models (Hele–Shaw cells and microfluidic chips) were comparable with those measured at bulk conditions, the measured vapour pressures in the rock samples (sandstone, limestone, tight sandstone, and shale) were 15% (on average) less than those modelled by PR-EOS.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1315
Author(s):  
Jingwei Huang ◽  
Hongsheng Wang

Confined phase behavior plays a critical role in predicting production from shale reservoirs. In this work, a pseudo-potential lattice Boltzmann method is applied to directly model the phase equilibrium of fluids in nanopores. First, vapor-liquid equilibrium is simulated by capturing the sudden jump on simulated adsorption isotherms in a capillary tube. In addition, effect of pore size distribution on phase equilibrium is evaluated by using a bundle of capillary tubes of various sizes. Simulated coexistence curves indicate that an effective pore size can be used to account for the effects of pore size distribution on confined phase behavior. With simulated coexistence curves from pore-scale simulation, a modified equation of state is built and applied to model the thermodynamic phase diagram of shale oil. Shifted critical properties and suppressed bubble points are observed when effects of confinement is considered. The compositional simulation shows that both predicted oil and gas production will be higher if the modified equation of state is implemented. Results are compared with those using methods of capillary pressure and critical shift.


2018 ◽  
Author(s):  
Magnus Bergh ◽  
Rasmus Wedberg ◽  
Jonas Lundgren

Sign in / Sign up

Export Citation Format

Share Document