The Effects of Fracture Orientation and Elastic Property Anisotropy on Hydraulic Fracture Conductivity in the Marcellus Shale

Author(s):  
Mark McGinley ◽  
Ding Zhu ◽  
A. Daniel Hill
2021 ◽  
Author(s):  
Mohamed El Sgher ◽  
Kashy Aminian ◽  
Ameri Samuel

Abstract The objective of this study was to investigate the impact of the hydraulic fracturing treatment design, including cluster spacing and fracturing fluid volume on the hydraulic fracture properties and consequently, the productivity of a horizontal Marcellus Shale well with multi-stage fractures. The availability of a significant amount of advanced technical information from the Marcellus Shale Energy and Environment Laboratory (MSEEL) provided an opportunity to perform an integrated analysis to gain valuable insight into optimizing fracturing treatment and the gas recovery from Marcellus shale. The available technical information from a horizontal well at MSEEL includes well logs, image logs (both vertical and lateral), diagnostic fracture injection test (DFIT), fracturing treatment data, microseismic recording during the fracturing treatment, production logging data, and production data. The analysis of core data, image logs, and DFIT provided the necessary data for accurate prediction of the hydraulic fracture properties and confirmed the presence and distribution of natural fractures (fissures) in the formation. Furthermore, the results of the microseismic interpretation were utilized to adjust the stress conditions in the adjacent layers. The predicted hydraulic fracture properties were then imported into a reservoir simulation model, developed based on the Marcellus Shale properties, to predict the production performance of the well. Marcellus Shale properties, including porosity, permeability, adsorption characteristics, were obtained from the measurements on the core plugs and the well log data. The Quanta Geo borehole image log from the lateral section of the well was utilized to estimate the fissure distribution s in the shale. The measured and published data were utilized to develop the geomechnical factors to account for the hydraulic fracture conductivity and the formation (matrix and fissure) permeability impairments caused by the reservoir pressure depletion during the production. Stress shadowing and the geomechanical factors were found to play major roles in production performance. Their inclusion in the reservoir model provided a close agreement with the actual production performance of the well. The impact of stress shadowing is significant for Marcellus shale because of the low in-situ stress contrast between the pay zone and the adjacent zones. Stress shadowing appears to have a significant impact on hydraulic fracture properties and as result on the production during the early stages. The geomechanical factors, caused by the net stress changes have a more significant impact on the production during later stages. The cumulative gas production was found to increase as the cluster spacing was decreased (larger number of clusters). At the same time, the stress shadowing caused by the closer cluster spacing resulted in a lower fracture conductivity which in turn diminished the increase in gas production. However, the total fracture volume has more of an impact than the fracture conductivity on gas recovery. The analysis provided valuable insight for optimizing the cluster spacing and the gas recovery from Marcellus shale.


2021 ◽  
Author(s):  
Aymen Alhemdi ◽  
Ming Gu

Abstract Slickwater-sand fracturing design is widely employed in Marcellus shale. The slickwater- sand creates long skinny fractures and maximizes the stimulated reservoir volume (SRV). However, due to the fast settling of sand in the water, lots of upper and deeper areas are not sufficiently propped. Reducing sand size can lead to insufficient fracture conductivity. This study proposes to use three candidate ultra-lightweight proppants ULWPs to enhance the fractured well performance in unconventional reservoirs. In step 1, the current sand pumping design is input into an in-house P3D fracture propagation simulator to estimate the fracture geometry and proppant concentrations. Next, the distribution of proppant concentration converts to conductivity and then to fracture permeability. In the third step, the fracture permeability from the second step is input into a reservoir simulator to predict the cumulative production for history matching and calibration. In step 4, the three ULWPs are used to replace the sand in the frac simulator to get new frac geometry and conductivity distribution and then import them in reservoir model for production evaluation. Before this study, the three ULWPs have already been tested in the lab to obtain their long-term conductivities under in-situ stress conditions. The conductivity distribution and production performance are analyzed and investigated. The induced fracture size and location of the produced layer for the current target well play a fundamental effect on ultra-light proppant productivity. The average conductivity of ULWPs with mesh 40/70 is larger and symmetric along the fracture except for a few places. However, ULWPs with mesh 100 generates low average conductivity and create a peak conductivity in limited areas. The ULW-3 tends to have less cumulative production compared with the other ULWPs. For this Marcellus Shale study, the advantages of ultra-lightweight proppant are restricted and reduced because the upward fracture height growth is enormous. And with the presence of the hydrocarbon layer is at the bottom of the fracture, making a large proportion of ULWPs occupies areas that are not productive places. The current study provides a guidance for operators in Marcellus Shale to determine (1) If the ULWP can benefit the current shale well treated by sand, (2) what type of ULWP should be used, and (3) given a certain type of ULWP, what is the optimum pumping schedule and staging/perforating design to maximize the well productivity. The similar workflow can be expanded to evaluate the economic potential of different ULWPs in any other unconventional field.


2021 ◽  
Author(s):  
Evgeniy Viktorovich Yudin ◽  
George Aleksandrovich Piotrovskiy ◽  
Maria Vladimirovna Petrova ◽  
Alexey Petrovich Roshchektaev ◽  
Nikita Vladislavovich Shtrobel

Abstract Requirements of targeted optimization are imposed on the hydraulic fracturing operations carried out in the conditions of borderline economic efficiency of fields taking into account geological and technological features. Consequently, the development of new analytical tools foranalyzing and planning the productivity of fractured wells, taking into account the structuralfeatures of the productive reservoir and inhomogeneous distribution of the fracture conductivity, is becoming highly relevant. The paper proposes a new approach of assessing the vertical hydraulic fracture productivityin a rectangular reservoir in a pseudo-steady state, based on reservoir resistivity concept described in the papers of Meyer et al. However, there is a free parameter in the case of modeling the productivity of a hydraulic fracture by the concept. The parameter describes the distribution of the inflow along the plane of the fracture. This paper presents a systematic approach to determining of the parameter. The resulting model allows to conduct an assessment of the influence of various complications in the fracture on the productivity index. During the research a method of determining the free parameter was developed,it was based on the obtained dependence of the inflow distribution on the coordinate along the fracture of finite conductivity. The methodology allowed to refine existent analytical solution of the Meyer et al. model, which, in turn, allowed to assess the influence of different fracture damages in the hydraulic fracture on the productivity index of the well. The work includes the cases of the presence of fracture damages at the beginning and at the end of the fracture. A hydraulic fracture model was built for each of the types of damages, it was based on the developed method, and also the solution of dimensionless productivity ratio was received. The results of the obtained solution were confirmed by comparison with the numerical solutions of commercial simulators and analytical models available in the literature. The advantage of the methodology is the resulting formulas for well productivity are relatively simple, even for exotic cases ofvariable conductivity fractures. The approaches and algorithms described in the paper assume the calculation of the productivity of a hydraulic fracture with variable conductivity and the presence of other complicatingfactors.The methodology of the paper can be used for analysis and diagnosis problems with formation hydraulic fracturing. The efficiency of the calculations allows using the presented methodology to solve inverse problems of determining the efficiency of the hydraulic fracturing operation.


2019 ◽  
Vol 12 (15) ◽  
Author(s):  
Yuxuan Liu ◽  
Dilin Wen ◽  
Xin Wu ◽  
Jianchun Guo ◽  
Jiandong Wang

2021 ◽  
Vol 196 ◽  
pp. 108046
Author(s):  
Mahmoud Desouky ◽  
Murtada Saleh Aljawad ◽  
Theis Solling ◽  
Amao Abduljamiu ◽  
Kion Norrman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document