Management of Geometrical Parameters of Hydraulic Fracturing in the Conditions of the Multilayer Romashkinsky Field (Russian)

2016 ◽  
Author(s):  
R. Khusainov ◽  
B. Ganiev ◽  
A. Lutfullin ◽  
R. Garifullin
Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-23 ◽  
Author(s):  
Zhaohui Chong ◽  
Qiangling Yao ◽  
Xuehua Li

The presence of a significant amount of discontinuous joints results in the inhomogeneous nature of the shale reservoirs. The geometrical parameters of these joints exert effects on the propagation of a hydraulic fracture network in the hydraulic fracturing process. Therefore, mechanisms of fluid injection-induced fracture initiation and propagation in jointed reservoirs should be well understood to unleash the full potential of hydraulic fracturing. In this paper, a coupled hydromechanical model based on the discrete element method is developed to explore the effect of the geometrical parameters of the joints on the breakdown pressure, the number and proportion of hydraulic fractures, and the hydraulic fracture network pattern generated in shale reservoirs. The microparameters of the matrix and joint used in the shale reservoir model are calibrated through the physical experiment. The hydraulic parameters used in the model are validated through comparing the breakdown pressure derived from numerical modeling against that calculated from the theoretical equation. Sensitivity analysis is performed on the geometrical parameters of the joints. Results demonstrate that the HFN pattern resulting from hydraulic fracturing can be roughly divided into four types, i.e., crossing mode, tip-to-tip mode, step path mode, and opening mode. As β (joint orientation with respect to horizontal principal stress in plane) increases from 0° to 15° or 30°, the hydraulic fracture network pattern changes from tip-to-tip mode to crossing mode, followed by a gradual decrease in the breakdown pressure and the number of cracks. In this case, the hydraulic fracture network pattern is controlled by both γ (joint step angle) and β. When β is 45° or 60°, the crossing mode gains dominance, and the breakdown pressure and the number of cracks reach the lowest level. In this case, the HFN pattern is essentially dependent on β and d (joint spacing). As β reaches 75° or 90°, the step path mode is ubiquitous in all shale reservoirs, and the breakdown pressure and the number of the cracks both increase. In this case, β has a direct effect on the HFN pattern. In shale reservoirs with the same β, either decrease in k (joint persistency) and e (joint aperture) or increase in d leads to the increase in the breakdown pressure and the number of cracks. It is also found that changes in d and e result in the variation in the proportion of different types of hydraulic fractures. The opening mode of the hydraulic fracture network pattern is observed when e increases to 1.2 × 10−2 m.


Author(s):  
Alexey S. Shlyapkin ◽  
Alexey V. Tatosov

Improving technologies and increasing the number of activities related to hydraulic fracturing increase the requirements for the speed and quality of engineering support. For hydraulic fracturing design, there are specialized software products-hydraulic fracturing simulators, which are based on mathematical models of various dimensions. Taking into account the influence of filtration leaks into the reservoir and the behavior of proppant particles in the crack largely determine the shape of the fracture crack. In the model representation, these factors are taken into account, but they need to be clarified in order to increase the quality of the forecast and estimate the productivity of the crack, which determines the relevance of this area of study. In this paper, we propose an analysis that allows us to quickly evaluate the geometric parameters of the crack when changing the technological parameters and properties of the fracture fluid. The presented mathematical model is based on a one-dimensional mathematical model in PKN representation (Perkins — Kern — Nordgren model). All calculations presented in this paper were performed using the certified TSH Frac software package designed for modeling the geometric parameters of hydraulic fracturing cracks. The results of the study can be used in engineering practice for rapid assessment of the geometric parameters of a hydraulic fracturing crack. Subsequent adjustment and adjustment of the model can be carried out when additional information is obtained during small-volume test uploads in the well under study.


2020 ◽  
pp. 34-42
Author(s):  
Thibault Chastel ◽  
Kevin Botten ◽  
Nathalie Durand ◽  
Nicole Goutal

Seagrass meadows are essential for protection of coastal erosion by damping wave and stabilizing the seabed. Seagrass are considered as a source of water resistance which modifies strongly the wave dynamics. As a part of EDF R & D seagrass restoration project in the Berre lagoon, we quantify the wave attenuation due to artificial vegetation distributed in a flume. Experiments have been conducted at Saint-Venant Hydraulics Laboratory wave flume (Chatou, France). We measure the wave damping with 13 resistive waves gauges along a distance L = 22.5 m for the “low” density and L = 12.15 m for the “high” density of vegetation mimics. A JONSWAP spectrum is used for the generation of irregular waves with significant wave height Hs ranging from 0.10 to 0.23 m and peak period Tp ranging from 1 to 3 s. Artificial vegetation is a model of Posidonia oceanica seagrass species represented by slightly flexible polypropylene shoots with 8 artificial leaves of 0.28 and 0.16 m height. Different hydrodynamics conditions (Hs, Tp, water depth hw) and geometrical parameters (submergence ratio α, shoot density N) have been tested to see their influence on wave attenuation. For a high submergence ratio (typically 0.7), the wave attenuation can reach 67% of the incident wave height whereas for a low submergence ratio (< 0.2) the wave attenuation is negligible. From each experiment, a bulk drag coefficient has been extracted following the energy dissipation model for irregular non-breaking waves developed by Mendez and Losada (2004). This model, based on the assumption that the energy loss over the species meadow is essentially due to the drag force, takes into account both wave and vegetation parameter. Finally, we found an empirical relationship for Cd depending on 2 dimensionless parameters: the Reynolds and Keulegan-Carpenter numbers. These relationships are compared with other similar studies.


Sign in / Sign up

Export Citation Format

Share Document