Investigation of the Impact of Diagenesis on Reservoir Quality in Carbonate Reservoir: A Case Study

2017 ◽  
Author(s):  
Jawaher Al Sabeai ◽  
Arthur P. C. Lavenu
2021 ◽  
Author(s):  
Mohammadhossein Mohammadlou ◽  
◽  
Matthew Guy Reppert ◽  
Roxane Del Negro ◽  
George Jones ◽  
...  

During well planning, drillers and petrophysicists have different principle objectives. The petrophysicist’s aim is to acquire critical well data, but this can lead to increased operational risk. The driller is focused on optimizing the well design, which can result in compromised data quality. In extreme cases, the impact of well design on petrophysical data can lead to erroneous post-well results that impact the entire value-chain assessment and decision making toward field development. In this paper, we present a case study from a syn-rift, Upper Jurassic reservoir in the Norwegian Sea where well design significantly impacted reservoir characterization. Three wells (exploration, appraisal, and geopilot) are compared in order to demonstrate the impact of overbalanced drilling on well data from both logs and core. Implications for reservoir quality assessment, volume estimates, and the errors introduced into both a static geomodel and dynamic reservoir simulation are discussed. This case study highlights the importance of optimizing well design for petrophysical data collection and demonstrates the potential for value creation. Extensive data collection was initially carried out in both exploration and appraisal wells, including full sets of logging while drilling (LWD), wireline logging, fluid sampling, and extensive coring. Both wells were drilled with considerable overbalanced mud weights due to the risk of overpressured reservoirs in the region. The log data was subsequently corrected for significant mud-filtration invasion, with calibration to core measurements guiding the interpretation. Geological and reservoir models were built based on results from the two wells, and development wells were planned accordingly. A thorough investigation of core material raised suspicion that there could also be a significant adverse effect of core properties resulting from overbalanced drilling. The implications were so significant for the reservoir volume that a strategic decision was made to drill a geopilot well close to the initial exploration well, prior to field development drilling. The well was drilled six years after the initial exploration phase with considerably lower overbalance. Extensive well data, including one core, were acquired. The recovered core was crucial in order to compare the reservoir properties for comparable facies between all three wells. The results from the core demonstrate distinctly different rock quality characteristics, especially at the high end of the reservoir quality spectrum. Results of the core study confirmed the initial hypothesis that overbalanced drilling had significantly impacted the properties of the core as well as the well logs. The study concluded that the updated reservoir model properties would significantly increase the in-place volumes compared to the pre-geopilot estimate. This study shows how well design adversely affected petrophysical measurements and how errors in these data compromised geological and reservoir models, leading to a suboptimal field development plan that eroded significant value. This example provides a case study that can be used to improve the well design so that petrophysicists and drillers can both be part of the same value creation result. Future work will include further laboratory investigations on the effects of high overbalanced drilling on core and possible “root causes” for compromised core integrity.


GeoArabia ◽  
2009 ◽  
Vol 14 (3) ◽  
pp. 17-38
Author(s):  
Dirk Knaust

ABSTRACT In the Upper Permian to Lower Triassic Khuff Formation in the Arabian Gulf, a vast shallow-marine carbonate platform developed broad facies belts with little significant changes in the lithofacies. However, trace fossil assemblages and ichnofabrics, in combination with sedimentological observations, serve in subdividing this platform and in distinguishing sub-environments. From proximal to distal, these are sabkha and salina, tidal flat, restricted lagoon, open lagoon, platform margin, shoreface/inner ramp, slope/outer ramp and basin/deeper intra-shelf. In this way, changes in relative sea level can be better reconstructed and guide the sequence stratigraphic interpretation. Meter-scale shallowing-upward cycles dominate the succession and, in addition to conventional methods, bioturbation, trace fossil assemblages and tiering patterns aid in interpreting subtidal, lower and upper intertidal and supratidal portions of these peritidal cycles. Bioturbation (and cryptobioturbation) have an impact on the primary reservoir quality before diagenetic processes overprint the deposits. For instance, deposit-feeders (such as vermiform organisms) introduce a certain amount of mud and decrease porosity and permeability considerably, whereas others like the Zoophycos-producers fill their dwellings with ooid grains and turn a mudstone from a barrier to a flow unit. This novel study demonstrates the value of ichnological information in carbonate reservoir characterization and the significance of trace fossil analysis in facies interpretation, reservoir zonation and the impact of bioturbation on the reservoir quality.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Dazhong Ren ◽  
Fu Yang ◽  
Rongxi Li ◽  
Yuhong Li ◽  
Dengke Liu

To analyze the impact of the factors on physical properties and the mechanism of tightness as well as favorable accumulation space of tight sandstone reservoir, comprehensive analysis is conducted using various kinds of experiments. The results show that the predominant rock type is medium-coarse grained lithic quartzarenite, and the main accumulating space is the dissolved secondary pores. Reservoir pore-throat structures can be divided into four categories. Based on morphologies and parameters which derived from capillary pressure curves, the physical properties rank in the following descending sequence: Type   I > Type   II > Type   III > Type   IV . The reservoir quality is influenced by both sedimentation and diagenesis synthetically. The underwater distributary channel is the dominant space for favorable reservoir. Compaction and cementation play dominant roles in the reduction of permeability. The loss of primary pores caused by both those diagenesis are 20.52% and 16.91%, respectively. Secondary pores formed by dissolution improve the reservoir quality by increase the porosity (2.68%). This suggests that weak diagenesis greatly contributes to the improvement of reservoir quality.


Sign in / Sign up

Export Citation Format

Share Document