Highly Efficient Nano Boron Crosslinker for Low-Polymer Loading Fracturing Fluid System

Author(s):  
Kun Wang ◽  
Yanling Wang ◽  
Jinheng Ren ◽  
Caili Dai
2019 ◽  
Author(s):  
Chuanbao Zhang ◽  
Yanling Wang ◽  
Kobina Forson ◽  
Zichen Yin ◽  
Baoyu Guo ◽  
...  

2015 ◽  
Vol 88 (11) ◽  
pp. 1884-1891 ◽  
Author(s):  
Siming Yan ◽  
Yongji Wang ◽  
Jia He ◽  
Hongdan Zhang

RSC Advances ◽  
2019 ◽  
Vol 9 (27) ◽  
pp. 15246-15256 ◽  
Author(s):  
Jinhao Gao ◽  
Guanghua Zhang ◽  
Lei Wang ◽  
Li Ding ◽  
Huaqiang Shi ◽  
...  

Surfactant and hydrophobic chains form a dense network structure, resulting in an improvement in the salt tolerance of the polymer.


SPE Journal ◽  
2016 ◽  
Vol 22 (02) ◽  
pp. 622-631 ◽  
Author(s):  
Feng Liang ◽  
Ghaithan Al-Muntasheri ◽  
Hooisweng Ow ◽  
Jason Cox

Summary In the quest to discover more natural-gas resources, considerable attention has been devoted to finding and extracting gas locked within tight formations with permeability in the nano- to microdarcy range. The main challenges associated with working in such formations are the intrinsically high-temperature and high-pressure bottom conditions. For formations with bottomhole temperatures at approximately 350–400°F, traditional hydraulic-fracturing fluids that use crosslinked polysaccharide gels, such as guar and its derivatives, are not suitable because of significant polymer breakdown in this temperature range. Fracturing fluids that can work at these temperatures require thermally stable synthetic polymers such as acrylamide-based polymers. However, such polymers have to be used at very-high concentrations to suspend proppants. The high-polymer concentrations make it very difficult to completely degrade at the end of a fracturing operation. As a consequence, formation damage by polymer residue can reduce formation conductivity to gas flow. This paper addresses the shortcomings of the current state-of-the-art high-temperature fracturing fluids and focuses on developing a less-damaging, high-temperature-stable fluid that can be used at temperatures up to 400°F. A laboratory study was conducted with this novel system, which comprises a synthetic acrylamide-based copolymer gelling agent and is capable of being crosslinked with an amine-containing polymer-coated nanosized particulate crosslinker (nanocrosslinker). The laboratory data have demonstrated that the temperature stability of the crosslinked fluid is much better than that of a similar fluid lacking the nanocrosslinker. The nanocrosslinker allows the novel fluid system to operate at significantly lower polymer concentrations (25–45 lbm/1,000 gal) compared with current commercial fluid systems (50–87 lbm/1,000 gal) designed for temperatures from 350 to 400°F. This paper presents results from rheological studies that demonstrate superior crosslinking performance and thermal stability in this temperature range. This fracturing-fluid system has sufficient proppant-carrying viscosity, and allows for efficient cleanup by use of an oxidizer-type breaker. Low polymer loading and little or no polymer residue are anticipated to facilitate efficient cleanup, reduced formation damage, better fluid conductivity, and enhanced production rates. Laboratory results from proppant-pack regained-conductivity tests are also presented.


2020 ◽  
Vol 10 (8) ◽  
pp. 3419-3436
Author(s):  
Kuangsheng Zhang ◽  
Zhenfeng Zhao ◽  
Meirong Tang ◽  
Wenbin Chen ◽  
Chengwang Wang ◽  
...  

Abstract When cold fluid is injected into low-temperature, low-pressure, low-permeability reservoirs containing wax-bearing heavy oil, cryogenic paraffin deposition and heavy oil condensation will occur, thus damaging the formation. Moreover, the formation pressure coefficient is low and the working fluid flowback efficiency is low, which affects the fracturing stimulation effect. Therefore, an in situ heat/gas clean foam fracturing fluid system is proposed. This system can ensure that conventional fracturing fluid can create fractures and carry proppant in the reservoir, generate heat in situ to avoid cold damage, reduce the viscosity, and improve the fluidity of crude oil. The in situ heat fracturing fluid generates a large amount of inert gas while generating heat, thus forming foam-like fracturing fluid, reducing fluid loss, improving proppant-carrying performance, improving gel-breaking performance, effectively improving crack conductivity, and is clean and environmentally friendly. Based on the improved existing fracturing fluid system, in this paper, a new type of in situ heat fracturing fluid system is proposed, and a system optimization evaluation is conducted through laboratory experiments according to the performance evaluation standard of water-based fracturing fluid. Compared with the traditional in situ heat fracturing fluid system, the fracturing fluid system proposed in this study generates a large amount of inert gas and form foam-like fracturing fluid, reduces fluid loss, enhances the proppant-carrying capacity and gel-breaking performance, improves crack conductivity, the gel without residue and that the gel-breaking liquid is clean and harmless.


2020 ◽  
Author(s):  
Zhifeng Luo ◽  
Nanlin Zhang ◽  
Liqiang Zhao ◽  
Lin Wu ◽  
Yuxin Pei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document