Chemical Flooding in Low Permeability Carbonate Rocks

Author(s):  
Pinaki Ghosh ◽  
Himanshu Sharma ◽  
Kishore K. Mohanty
2021 ◽  
Author(s):  
Nancy Chun Zhou ◽  
Meng Lu ◽  
Fuchen Liu ◽  
Wenhong Li ◽  
Jianshen Li ◽  
...  

Abstract Based on the results of the foam flooding for our low permeability reservoirs, we have explored the possibility of using low interfacial tension (IFT) surfactants to improve oil recovery. The objective of this work is to develop a robust low-tension surfactant formula through lab experiments to investigate several key factors for surfactant-based chemical flooding. Microemulsion phase behavior and aqueous solubility experiments at reservoir temperature were performed to develop the surfactant formula. After reviewing surfactant processes in literature and evaluating over 200 formulas using commercially available surfactants, we found that we may have long ignored the challenges of achieving aqueous stability and optimal microemulsion phase behavior for surfactant formulations in low salinity environments. A surfactant formula with a low IFT does not always result in a good microemulsion phase behavior. Therefore, a novel synergistic blend with two surfactants in the formulation was developed with a cost-effective nonionic surfactant. The formula exhibits an increased aqueous solubility, a lower optimum salinity, and an ultra-low IFT in the range of 10-4 mN/m. There were challenges of using a spinning drop tensiometer to measure the IFT of the black crude oil and the injection water at reservoir conditions. We managed the process and studied the IFTs of formulas with good Winsor type III phase behavior results. Several microemulsion phase behavior test methods were investigated, and a practical and rapid test method is proposed to be used in the field under operational conditions. Reservoir core flooding experiments including SP (surfactant-polymer) and LTG (low-tension-gas) were conducted to evaluate the oil recovery. SP flooding with a selected polymer for mobility control and a co-solvent recovered 76% of the waterflood residual oil. Furthermore, 98% residual crude oil recovery was achieved by LTG flooding through using an additional foaming agent and nitrogen. These results demonstrate a favorable mobilization and displacement of the residual oil for low permeability reservoirs. In summary, microemulsion phase behavior and aqueous solubility tests were used to develop coreflood formulations for low salinity, low temperature conditions. The formulation achieved significant oil recovery for both SP flooding and LTG flooding. Key factors for the low-tension surfactant-based chemical flooding are good microemulsion phase behavior, a reasonably aqueous stability, and a decent low IFT.


2008 ◽  
Vol 22 (4) ◽  
pp. 2353-2361 ◽  
Author(s):  
Behnam Sedaee Sola ◽  
Fariborz Rashidi

SPE Journal ◽  
2021 ◽  
pp. 1-16
Author(s):  
Miguel Mejía ◽  
Gary A. Pope ◽  
Haofeng Song ◽  
Matthew T. Balhoff

Summary New experiments using polyethylene oxide (PEO) polymer were performed to evaluate its potential for enhanced oil recovery (EOR) applications in low-permeability reservoirs. This is the first time that high molecular weight PEO solutions have been shown to have favorable transport in low-permeability (~20 md) carbonate cores and the first time PEO has been shown to improve oil recovery in a fractured carbonate core. Rheology measurements in synthetic seawater show the higher viscosity of PEO solutions compares favorably to the viscosity of acrylamide–sodium acrylate (AM-AA) copolymers of similar molecular weight because PEO is less sensitive to hardness and high salinity. Filtration experiments using 0.45 μm cellulose filters show very favorable filtration ratios of PEO with a molecular weight of 4 million g/mol, which is consistent with its favorable transport in low-permeability cores. Four coreflood experiments in Texas Cream Limestone (TC Limestone) cores demonstrate the viability of PEO for EOR in low-permeability carbonate rocks. Single-phase experiments show 4 million g/mol PEO solutions transported through 18 and 28 md TC Limestone cores. Oil recovery experiments show 4 million g/mol PEO solutions transported and was more efficient than waterflooding in aged TC Limestone with favorable retention of 40 µg/g rock. An oil recovery experiment in an artificially fractured TC Limestone core improved oil recovery by a remarkable 15% considering the very large fracture-matrix permeability contrast (>7,000). These experimental results as well as other favorable properties of PEO reported in the literature indicate PEO should be considered for some EOR applications, especially in low-permeability reservoirs.


SPE Journal ◽  
2018 ◽  
Vol 23 (06) ◽  
pp. 2218-2231 ◽  
Author(s):  
Pinaki Ghosh ◽  
Kishore K. Mohanty

Summary Carbonate rocks are typically heterogeneous at many scales, leading to low waterflood recoveries. Polymers and gels cannot be injected into nonfractured low-permeability carbonates (k < 10 md) because pore throats are smaller than the polymers. Foams have the potential to improve both oil-displacement efficiency and sweep efficiency in such carbonate rocks. However, foams have to overcome two adverse conditions in carbonates: oil-wettability and low permeability. This study evaluates several cationic-foam formulations that combine wettability alteration and foaming in low-permeability oil-wet carbonate cores. Contact-angle experiments were performed on initially oil-wet media to evaluate the wettability-altering capabilities of the surfactant formulations. Static foam-stability tests were conducted to evaluate their foaming performance in bulk; foam-flow experiments (without crude oil) were performed in porous media to estimate the foam strength. Finally, oil-displacement experiments were performed with a crude oil after a secondary gasflood. Two different injection strategies were studied in this work: surfactant slug followed by gas injection and coinjection of surfactant with gas at a constant foam quality. Systematic study of oil-displacement experiments in porous media showed the importance of wettability alteration in increasing tertiary oil recovery for oil-wet media. Several blends of cationic, nonionic, and zwitterionic surfactants were used in the experiments. In-house-developed Gemini cationic surfactant GC 580 was able to alter the wettability from oil-wet to water-wet and also formed strong bulk foam. Static foam tests showed an increase in bulk foam stability with the addition of zwitterionic surfactants to GC 580. Oil-displacement experiments in oil-wet carbonate cores revealed that tertiary oil recovery with injection of a wettability-altering surfactant and foam can recover a significant amount of oil [approximately 25 to 52% original oil in place (OOIP)] over the secondary gasflood. The foam rheology in the presence of oil suggested propagation of only weak foam in oil-wet low-permeability carbonate cores.


Sign in / Sign up

Export Citation Format

Share Document