Chemical flooding of oil reservoirs 7. Oil expulsion by spontaneous imbibition of brine with and without surfactant in mixed-wet, low permeability chalk material

1996 ◽  
Vol 117 (1-2) ◽  
pp. 109-115 ◽  
Author(s):  
Jess Milter ◽  
Tor Austad
2021 ◽  
Author(s):  
Xu-Guang Song ◽  
Ming-Wei Zhao ◽  
Cai-Li Dai ◽  
Xin-Ke Wang ◽  
Wen-Jiao Lv

AbstractThe ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention. In this work, the active silica nanofluids were prepared by modified active silica nanoparticles and surfactant BSSB-12. The dispersion stability tests showed that the hydraulic radius of nanofluids was 58.59 nm and the zeta potential was − 48.39 mV. The active nanofluids can simultaneously regulate liquid–liquid interface and solid–liquid interface. The nanofluids can reduce the oil/water interfacial tension (IFT) from 23.5 to 6.7 mN/m, and the oil/water/solid contact angle was altered from 42° to 145°. The spontaneous imbibition tests showed that the oil recovery of 0.1 wt% active nanofluids was 20.5% and 8.5% higher than that of 3 wt% NaCl solution and 0.1 wt% BSSB-12 solution. Finally, the effects of nanofluids on dynamic contact angle, dynamic interfacial tension and moduli were studied from the adsorption behavior of nanofluids at solid–liquid and liquid–liquid interface. The oil detaching and transporting are completed by synergistic effect of wettability alteration and interfacial tension reduction. The findings of this study can help in better understanding of active nanofluids for EOR in ultra-low permeability reservoirs.


2004 ◽  
Vol 126 (2) ◽  
pp. 119-124 ◽  
Author(s):  
O. S. Shokoya ◽  
S. A. (Raj) Mehta ◽  
R. G. Moore ◽  
B. B. Maini ◽  
M. Pooladi-Darvish ◽  
...  

Flue gas injection into light oil reservoirs could be a cost-effective gas displacement method for enhanced oil recovery, especially in low porosity and low permeability reservoirs. The flue gas could be generated in situ as obtained from the spontaneous ignition of oil when air is injected into a high temperature reservoir, or injected directly into the reservoir from some surface source. When operating at high pressures commonly found in deep light oil reservoirs, the flue gas may become miscible or near–miscible with the reservoir oil, thereby displacing it more efficiently than an immiscible gas flood. Some successful high pressure air injection (HPAI) projects have been reported in low permeability and low porosity light oil reservoirs. Spontaneous oil ignition was reported in some of these projects, at least from laboratory experiments; however, the mechanism by which the generated flue gas displaces the oil has not been discussed in clear terms in the literature. An experimental investigation was carried out to study the mechanism by which flue gases displace light oil at a reservoir temperature of 116°C and typical reservoir pressures ranging from 27.63 MPa to 46.06 MPa. The results showed that the flue gases displaced the oil in a forward contacting process resembling a combined vaporizing and condensing multi-contact gas drive mechanism. The flue gases also became near-miscible with the oil at elevated pressures, an indication that high pressure flue gas (or air) injection is a cost-effective process for enhanced recovery of light oils, compared to rich gas or water injection, with the potential of sequestering carbon dioxide, a greenhouse gas.


2021 ◽  
Author(s):  
Xuefen Liu ◽  
Fei Chen ◽  
Hongwu Xu ◽  
Yazhou Li ◽  
Siyang Wang ◽  
...  

2021 ◽  
Author(s):  
Nancy Chun Zhou ◽  
Meng Lu ◽  
Fuchen Liu ◽  
Wenhong Li ◽  
Jianshen Li ◽  
...  

Abstract Based on the results of the foam flooding for our low permeability reservoirs, we have explored the possibility of using low interfacial tension (IFT) surfactants to improve oil recovery. The objective of this work is to develop a robust low-tension surfactant formula through lab experiments to investigate several key factors for surfactant-based chemical flooding. Microemulsion phase behavior and aqueous solubility experiments at reservoir temperature were performed to develop the surfactant formula. After reviewing surfactant processes in literature and evaluating over 200 formulas using commercially available surfactants, we found that we may have long ignored the challenges of achieving aqueous stability and optimal microemulsion phase behavior for surfactant formulations in low salinity environments. A surfactant formula with a low IFT does not always result in a good microemulsion phase behavior. Therefore, a novel synergistic blend with two surfactants in the formulation was developed with a cost-effective nonionic surfactant. The formula exhibits an increased aqueous solubility, a lower optimum salinity, and an ultra-low IFT in the range of 10-4 mN/m. There were challenges of using a spinning drop tensiometer to measure the IFT of the black crude oil and the injection water at reservoir conditions. We managed the process and studied the IFTs of formulas with good Winsor type III phase behavior results. Several microemulsion phase behavior test methods were investigated, and a practical and rapid test method is proposed to be used in the field under operational conditions. Reservoir core flooding experiments including SP (surfactant-polymer) and LTG (low-tension-gas) were conducted to evaluate the oil recovery. SP flooding with a selected polymer for mobility control and a co-solvent recovered 76% of the waterflood residual oil. Furthermore, 98% residual crude oil recovery was achieved by LTG flooding through using an additional foaming agent and nitrogen. These results demonstrate a favorable mobilization and displacement of the residual oil for low permeability reservoirs. In summary, microemulsion phase behavior and aqueous solubility tests were used to develop coreflood formulations for low salinity, low temperature conditions. The formulation achieved significant oil recovery for both SP flooding and LTG flooding. Key factors for the low-tension surfactant-based chemical flooding are good microemulsion phase behavior, a reasonably aqueous stability, and a decent low IFT.


Sign in / Sign up

Export Citation Format

Share Document