Experimental Investigation of Polyethylene Oxide Polymer Solutions for Enhanced Oil Recovery in Low-Permeability Carbonate Rocks

SPE Journal ◽  
2021 ◽  
pp. 1-16
Author(s):  
Miguel Mejía ◽  
Gary A. Pope ◽  
Haofeng Song ◽  
Matthew T. Balhoff

Summary New experiments using polyethylene oxide (PEO) polymer were performed to evaluate its potential for enhanced oil recovery (EOR) applications in low-permeability reservoirs. This is the first time that high molecular weight PEO solutions have been shown to have favorable transport in low-permeability (~20 md) carbonate cores and the first time PEO has been shown to improve oil recovery in a fractured carbonate core. Rheology measurements in synthetic seawater show the higher viscosity of PEO solutions compares favorably to the viscosity of acrylamide–sodium acrylate (AM-AA) copolymers of similar molecular weight because PEO is less sensitive to hardness and high salinity. Filtration experiments using 0.45 μm cellulose filters show very favorable filtration ratios of PEO with a molecular weight of 4 million g/mol, which is consistent with its favorable transport in low-permeability cores. Four coreflood experiments in Texas Cream Limestone (TC Limestone) cores demonstrate the viability of PEO for EOR in low-permeability carbonate rocks. Single-phase experiments show 4 million g/mol PEO solutions transported through 18 and 28 md TC Limestone cores. Oil recovery experiments show 4 million g/mol PEO solutions transported and was more efficient than waterflooding in aged TC Limestone with favorable retention of 40 µg/g rock. An oil recovery experiment in an artificially fractured TC Limestone core improved oil recovery by a remarkable 15% considering the very large fracture-matrix permeability contrast (>7,000). These experimental results as well as other favorable properties of PEO reported in the literature indicate PEO should be considered for some EOR applications, especially in low-permeability reservoirs.

Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 600 ◽  
Author(s):  
Long ◽  
Wang ◽  
Zhu ◽  
Huang ◽  
Leng ◽  
...  

Polymeric nanoparticle suspension is a newly developed oil-displacing agent for enhanced oil recovery (EOR) in low-permeability reservoirs. In this work, SiO2/P(MBAAm-co-AM) polymeric nanoparticles were successfully synthesized by a simple distillation–precipitation polymerization method. Due to the introduction of polymer, the SiO2/P(MBAAm-co-AM) nanoparticles show a favorable swelling performance in aqueous solution, and their particle sizes increase from 631 to 1258 nm as the swelling times increase from 24 to 120 h. The apparent viscosity of SiO2/P(MBAAm-co-AM) suspension increases with an increase of mass concentration and swelling time, whereas it decreases as the salinity and temperature increase. The SiO2/P(MBAAm-co-AM) suspension behaves like a non-Newtonian fluid at lower shear rates, yet like a Newtonian fluid at shear rates greater than 300 s−1. The EOR tests of the SiO2/P(MBAAm-co-AM) suspension in heterogeneous, low-permeability cores show that SiO2/P(MBAAm-co-AM) nanoparticles can effectively improve the sweep efficiency and recover more residual oils. A high permeability ratio can result in a high incremental oil recovery in parallel cores. With an increase of the permeability ratio of parallel cores from 1.40 to 15.49, the ratios of incremental oil recoveries (low permeability/high permeability) change from 7.69/4.61 to 23.61/8.46. This work demonstrates that this SiO2/P(MBAAm-co-AM) suspension is an excellent conformance control agent for EOR in heterogeneous, low-permeability reservoirs. The findings of this study can help to further the understanding of the mechanisms of EOR using SiO2/P(MBAAm-co-AM) suspension in heterogeneous, low-permeability reservoirs.


Author(s):  
Ming Zhou ◽  
Juncheng Bu ◽  
Jie Wang ◽  
Xiao Guo ◽  
Jie Huang ◽  
...  

Poly (MSt-MMA) nanosphere as foam stabilizing agent was synthesized by emulsion polymerization. The three phase foam was prepared with Disodium 4-Dodecyl-2,4′-Oxydiben Zenesulfonate (DOZS) as foaming agent, Hydrolyzed Polyacrylamide (HPAM) and synthesized poly (MSt-MMA) nanospheres as the mixed foam stabilizing agents. It had outstanding foaming performance and foam stability. The optimal three phase foam system consisting of 0.12 wt% HPAM, 0.04 wt% poly (MSt-MMA) nanospheres and 0.12 wt% DOZS by orthogonal experiment, had high apparent viscosity, which showed that three components had a very good synergistic effect. The three phase foam’s temperature tolerance and salt tolerance were researched in laboratory tests. Flooding oil experiment showed that the average displacement efficiency of three phase foam system was 16.1 wt% in single core experiments and 21.7 wt% in double core experiments. Resistance coefficient of low permeability core was more than those of high permeability core, but their residual resistance coefficients were small. The results of core experiment and pilot test indicated that the three phase foam had good profile control ability and generated low damage to the low permeability layer for extra-low permeability reservoirs. Three phase foam flooding has great prospects for Enhanced Oil Recovery (EOR) in extra-low permeability reservoirs.


Fuel ◽  
2019 ◽  
Vol 241 ◽  
pp. 442-450 ◽  
Author(s):  
Yan Zhang ◽  
Mingwei Gao ◽  
Qing You ◽  
Hongfu Fan ◽  
Wenhui Li ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1077
Author(s):  
Tinuola Udoh ◽  
Jan Vinogradov

In this paper, a thorough experimental investigation of enhanced oil recovery via controlled salinity-biosurfactant injection under typical reservoir temperature conditions is reported for the first time. Sixteen core flooding experiments were carried out with four displacing fluids in carbonate rock samples and the improved oil recovery was investigated in secondary, tertiary and quaternary injection modes. The temperature effect on oil recovery during floodings was compared at two temperatures (23 °C and 70 °C) on similar rock samples and fluids using two types of biosurfactants: GreenZyme® and rhamnolipids. The results of this study show that injection of controlled salinity brine (CSB) and controlled salinity biosurfactant brine (CSBSB) improve oil recovery relative to injection of high salinity formation brine (FMB) at both high and low temperatures. At 23 °C, CSBSB improved oil recovery by 15–17% OIIP compared with conventional FMB injection, and by 4–8% OIIP compared with CSB injection. At 70 °C, the injection of CSBSB increased oil recovery by 10–13% OIIP compared with injection of FMB, and by 2–6% OIIP compared with CSB injection. Furthermore, increase in the system temperature generally resulted in increased oil recovery, irrespective of the type of the injection brine. The results of this study have demonstrated for the first time the enhanced oil recovery potential of combined controlled salinity brine and biosurfactant applications at temperature relevant to hydrocarbon reservoirs. The results of this study are significant for the design of controlled salinity and biosurfactant flooding in carbonate reservoirs.


Sign in / Sign up

Export Citation Format

Share Document