Full Field Scale Hydrocarbon Gas Enhanced Oil Recovery Project in Offshore Vietnam -Response Analysis and Optimization Practice in Early Stage

2018 ◽  
Author(s):  
Yohei Kawahara ◽  
Yukiya Sako ◽  
Zhenjie Chai ◽  
Chuyen Nguyen Chu ◽  
Takahiro Murakami ◽  
...  
2021 ◽  
Author(s):  
Bogdan-George Davidescu ◽  
Mathias Bayerl ◽  
Christoph Puls ◽  
Torsten Clemens

Abstract Enhanced Oil Recovery pilot testing aims at reducing uncertainty ranges for parameters and determining operating conditions which improve the economics of full-field deployment. In the 8.TH and 9.TH reservoirs of the Matzen field, different well configurations were tested, vertical versus horizontal injection and production wells. The use of vertical or horizontal wells depends on costs and reservoir performance which is challenging to assess. Water cut, polymer back-production and pressures are used to understand reservoir behaviour and incremental oil production, however, these data do not reveal insights about changes in reservoir connectivity owing to polymer injection. Here, we used consecutive tracer tests prior and during polymer injection as well as water composition to elucidate the impact of various well configurations on sweep efficiency improvements. The results show that vertical well configuration for polymer injection and production leads to substantial acceleration along flow paths but less swept volume. Polymer injection does not only change the flow paths as can be seen from the different allocation factors before and after polymer injection but also the connected flow paths as indicated by a change in the skewness of the breakthrough tracer curves. For horizontal wells, the data shows that in addition to acceleration, the connected pore volume after polymer injection is substantially increased. This indicates that the sweep efficiency is improved for horizontal well configurations after polymer injection. The methodology leads to a quantitative assessment of the reservoir effects using different well configurations. These effects depend on the reservoir architecture impacting the changes in sweep efficiency by polymer injection. Consecutive tracer tests are an important source of information to determine which well configuration to be used in full-field implementation of polymer Enhanced Oil Recovery.


2021 ◽  
Author(s):  
Navpreet Singh ◽  
Hemanta Kumar Sarma

Abstract Low salinity waterflooding has been an area of great interest for researchers for almost over three decades for its perceived "simplicity," cost-effectiveness, and the potential benefits it offers over the other enhanced oil recovery (EOR) techniques. There have been numerous laboratory studies to study the effect of injection water salinity on oil recovery, but there are only a few cases reported worldwide where low salinity water flooding (LSW) has been implemented on a field scale. In this paper, we have summarized the results of our analyses for some of those successful field cases for both sandstone and carbonate reservoirs. Most field cases of LSW worldwide are in sandstone reservoirs. Although there have been a lot of experimental studies on the effect of water salinity on recovery in carbonate reservoirs, only a few cases of field-scale implementation have been reported for the LSW in carbonate reservoirs. The incremental improvement expected from the LSW depends on various factors like the brine composition (injection and formation water), oil composition, pressure, temperature, and rock mineralogy. Therefore, all these factors should be considered, together with some specially designed fit-for-purpose experimental studies need to be performed before implementing the LSW on a field scale. The evidence of the positive effect of LSW at the field scale has mostly been observed from near well-bore well tests and inter-well tests. However, there are a few cases such Powder River Basin in the USA and Bastrykskoye field in Russia, where the operators had unintentionally injected less saline water in the past and were pleasantly surprised when the analyses of the historical data seemed to attribute the enhanced oil recovery due to the lower salinity of the injected water. We have critically analyzed all the major field cases of LSW. Our paper highlights some of the key factors that worked well in the field, which showed a positive impact of LSW and a comparative assessment of the incremental recovery realized from the reservoir visa-a-vis the expectations generated from the laboratory-based experimental studies. It is envisaged that such a comparison could be more meaningful and reliable. Also, it identifies the likely uncertainties (and their sources) associated during the field implementation of LSW.


2011 ◽  
Vol 14 (06) ◽  
pp. 702-712 ◽  
Author(s):  
W. M. Stoll ◽  
H.. al Shureqi ◽  
J.. Finol ◽  
S. A. Al-Harthy ◽  
S.. Oyemade ◽  
...  

Summary After two decades of relative calm, chemical enhanced-oil-recovery (EOR) technologies are currently revitalized globally. Techniques such as alkaline/surfactant/polymer (ASP) flooding, originally developed by Shell, have the potential to recover significant fractions of remaining oil at a CO2 footprint that is low compared with, for example, thermal EOR, and they do not depend on a valuable miscible agent such as hydrocarbon gas. On the other hand, chemical EOR technologies typically require large quantities of chemical products such as surfactants and polymers, which must be transported to, and handled safely in, the field. Despite rising industry interest in chemical EOR, until today only polymer flooding has been applied on a significant scale, whereas applications of surfactant/polymer or alkaline ASP flooding were limited to multiwell pilots or to small field scale. Next to the oil-price fluctuations of the past two decades, technical reasons that discouraged the application of chemical EOR are excessive formation of carbonate or silica scale and formation of strong emulsions in the production facilities. Having identified significant target-oil volumes for ASP flooding, Petroleum Development Oman (PDO), supported by Shell Technology Oman, carried out a sequence of single-well pilots in three fields, sandstone and carbonate, to assess the flooding potential of tailor-made chemical formulations under real subsurface conditions, and to quantify the benefits of full-field ASP developments. This paper discusses the extensive design process that was followed. Starting from a description of the optimization of chemical phase behavior in test-tube and coreflood experiments, we elaborate how the key chemical and flow properties of an ASP flood are captured to calibrate a comprehensive reservoir-simulation model. Using this model, we evaluate PDO's single-well pilots and demonstrate how these results are used to design a pattern- flood pilot.


2016 ◽  
Author(s):  
Sanbo Lv ◽  
Xinwei Liao ◽  
Hao Chen ◽  
Zhiming Chen ◽  
Xianwei Lv ◽  
...  

2020 ◽  
Vol 1 (1) ◽  
pp. 6-10
Author(s):  
Geraldo A. R. Ramos ◽  
Bruno Elias ◽  
Kyari Yates

The neuro-fuzzy (NF) approach presented in this work is based on five (5) layered feedforward backpropagation algorithm applied for technical screening of enhanced oil recovery (EOR) methods. Associated reservoir rock-fluid oilfield data from successful EOR projects were used as input and predicted output in the training and validation processes, respectively. The developed model was then tested by using data set from Block B of an Angolan oilfield. The results of the sensitivity analysis between the Mamdani and the Takagi-Sugeno-Kang (TSK) approach incorporated in the algorithm has shown the robustness of the TSK ANFIS (Adaptive Neuro-Fuzzy Inference System) approach in comparison to the other approach for the prediction of a suitable EOR technique. The simulation test results showed that the model presented in this study can be used for technical selection of suitable EOR techniques. Within the area investigated (Block B, Angola) polymer, hydrocarbon gas, and combustion were identified as the suitable techniques for EOR.


2015 ◽  
Author(s):  
A. Kharghoria ◽  
Nathan Lett ◽  
J. T. Portwood ◽  
D. Biswas ◽  
Charles Hammond ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document